FREE patent keyword monitoring and additional FREE benefits. http://images1.freshpatents.com/images/triangleright (1K) REGISTER now for FREE triangleleft (1K)
FreshPatents.com Logo    FreshPatents.com icons
Monitor Keywords Patent Organizer File a Provisional Patent Browse Inventors Browse Industry Browse Agents


Active Solid-state Devices (e.g., Transistors, Solid-state Diodes) > Responsive To Non-electrical Signal (e.g., Chemical, Stress, Light, Or Magnetic Field Sensors) > Physical Deformation

Physical Deformation

Physical Deformation patent applications listed include Date, Patent Application Number, Patent Title, Patent Abstract summary and are linked to the corresponding patent application page.

09/18/14 - 20140264643 - Methods of forming buried electromechanical structures coupled with device substrates and structures formed thereby
Methods of forming integrated MEMS structures are described. Those methods and structures may include forming at least one MEMS structure on a first substrate, forming a first bonding layer on a top surface of the first substrate, and then coupling the first bonding layer disposed on the first substrate to...

09/18/14 - 20140264644 - Mems method and structure
MEMS structures and methods utilizing a locker film are provided. In an embodiment a locker film is utilized to hold and support a moveable mass region during the release of the moveable mass region from a surrounding substrate. By providing additional support during the release of the moveable mass, the...

09/18/14 - 20140264645 - Integrated structure with bidirectional vertical actuation
A Micro-Electro-Mechanical Systems (MEMS) device includes a first substrate with a first surface and a second surface, the first substrate including a base layer, a moveable beam disposed on the base layer, at least one metal layer, and one or more standoffs disposed on the base layer such that one...

09/18/14 - 20140264646 - Microelectromechanical system and method
A microelectromechanical system, including a first element and a second element, the first element having a first conductive surface facing a second conductive surface of the second element; wherein at least one of the first element and the second element is operable to constrainedly move nearer and farther from the...

09/18/14 - 20140264647 - Method of forming monolithic cmos-mems hybrid integrated, packaged structures
A method of forming a monolithic CMOS-MEMS hybrid integrated, packaged device comprising the steps of: providing a semiconductor substrate; forming MEMS or NEMS materials on the substrate having conductive, structural, or dielectric layers; forming at least one opening(s) on the semiconductor substrate; positioning on the substrate at least one prefabricated...

09/18/14 - 20140264648 - Mems integrated pressure sensor devices and methods of forming same
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the...

09/18/14 - 20140264649 - Micromechanical structure and corresponding production process
A micromechanical structure includes a substrate, a micromechanical functional structure, and a conductor track arrangement. The substrate has a top side, and the micromechanical functional structure is formed in the substrate on the top side. The conductor track arrangement is formed above the top side of the substrate, and the...

09/11/14 - 20140252506 - Semi-conductor sensor fabrication
Methods of fabricating semiconductor sensor devices include steps of fabricating a hermetically sealed MEMS cavity enclosing a MEMS sensor, while forming conductive vias through the device. The devices include a first semi-conductor layer defining at least one conductive via lined with an insulator and having a lower insulating surface; a...

09/11/14 - 20140252507 - Self-sealing membrane for mems devices
Embodiments of the present disclosure are related to MEMS devices having a suspended membrane that are secured to and spaced apart from a substrate with a sealed cavity therebetween. The membrane includes openings with sidewalls that are closed by a dielectric material. In various embodiments, the cavity between the membrane...

09/11/14 - 20140252508 - Mems device with a capping substrate
An integrated circuit device includes a dielectric layer disposed onto a first substrate, the dielectric layer having a sacrificial cavity formed therein. The circuit also includes a membrane layer formed onto the dielectric layer and suspended over the sacrificial cavity, and a capping substrate bonded to the membrane layer such...

09/11/14 - 20140252509 - Mems device and corresponding micromechanical structure with integrated compensation of thermo-mechanical stress
A micromechanical structure of a MEMS device, integrated in a die of semiconductor material provided with a substrate and having at least a first axis of symmetry lying in a horizontal plane, has a stator structure, which is fixed with respect to the substrate, and a rotor structure, having a...

09/11/14 - 20140252510 - Signal boosting apparatus and method of boosting signals
A signal boosting apparatus and a method of boosting signals applied in the MEMS are disclosed. The signal boosting apparatus includes a substrate, an oxide layer, and a signal transmission layer. The substrate has a doped region. The doped region has a plurality of conductive carriers. These conductive carriers have...

09/11/14 - 20140252511 - Mems apparatus
A MEMS apparatus includes a pillar, a supporter, and a solder. The pillar has a first side and a second side opposite to the first side. The supporter supports the pillar. The supporter is adjacent to the pillar, but the supporter is not connected to the pillar. The supporter has...

09/04/14 - 20140246737 - Mems vibrator, method of manufacturing mems vibrator, electronic device, and moving object
A MEMS vibrator includes an insulating portion, a first electrode provided on one surface of the insulating portion, a fixed portion, and a function portion, a second electrode provided so that at least a portion thereof overlaps the first electrode at a distance therefrom. The second electrode comes into contact...

08/28/14 - 20140239421 - Surface charge mitigation layer for mems sensors
A semiconductor device includes a substrate. At least one transducer is provided on the substrate. The at least one transducer includes at least one electrically conductive circuit element. A dielectric layer is deposited onto the substrate over the at least one transducer. A surface charge mitigation layer formed of a...

08/28/14 - 20140239422 - Electronic device, package, electronic apparatus, and moving object
A physical quantity sensor includes an IC chip and a package base mounted with the IC chip. The package base includes a first wiring layer provided with bonding pads connected to the IC chip via a bonding wire, a second wiring layer overlapping the first wiring layer in plan view,...

08/21/14 - 20140231934 - Electrical component and method of manufacturing the same
According to one embodiment, an electrical component comprises a substrate, a functional element formed on the substrate, a first layer configured to form a cavity which stores the functional element on the substrate, the first layer having through holes, the first layer having a first recessed portion and a first...

08/21/14 - 20140231935 - Multi-axial acceleration sensor and method of manufacturing the same
The present invention provides a multi-axial acceleration sensor and a method of manufacturing the multi-axial acceleration sensor. The method includes: providing a substrate having a lead plane; disposing a first sensor chip onto the lead plane, wherein a wire bonding plane of the first sensor chip is perpendicular to the...

08/21/14 - 20140231936 - Micro-electro-mechanical system (mems) and related actuator bumps, methods of manufacture and design structures
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes and a contact point on a substrate. The method further includes forming a MEMS beam over the fixed actuator electrodes and the contact point. The method...

08/21/14 - 20140231937 - Method for manufacturing a protective layer against hf etching, semiconductor device provided with the protective layer and method for manufacturing the semiconductor device
A method for manufacturing a protective layer for protecting an intermediate structural layer against etching with hydrofluoric acid, the intermediate structural layer being made of a material that can be etched or damaged by hydrofluoric acid, the method comprising the steps of: forming a first layer of aluminium oxide, by...

08/07/14 - 20140217521 - Mems device with stress relief structures
An encapsulated MEMS device includes stress-relief trenches in a region of its substrate that surrounds the movable micromachined structures and that is covered by a cap, such that the trenches are fluidly exposed to a cavity between the substrate and the cap. A method of fabricating a MEMS device includes...

07/31/14 - 20140210018 - Microelectromechanical system devices having crack resistant membrane structures and methods for the fabrication thereof
Methods for fabricating crack resistant Microelectromechanical (MEMS) devices are provided, as are MEMS devices produced pursuant to such methods. In one embodiment, the method includes forming a sacrificial body over a substrate, producing a multi-layer membrane structure on the substrate, and removing at least a portion of the sacrificial body...

07/31/14 - 20140210019 - Low-cost package for integrated mems sensors
An integrated MEMS sensor package is disclosed. The package comprises a sensor chip with a top surface and a bottom surface. The top surface comprises an opening. The bottom surface is attached to a substrate with electrical inter-connects. A lid is coupled to the top surface with an adhesive material....

07/24/14 - 20140203379 - Integration of laminate mems in bbul coreless package
An apparatus including a die including a first side and an opposite second side including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the second side of the die, the build-up carrier including a plurality of alternating layers...

07/10/14 - 20140191341 - Method and apparatus for a semiconductor structure
A semiconductor structure may include a first device having first surface with a first bonding layer formed thereon and a second device having a first surface with a second bonding layer formed thereon. The first bonding layer may provide an electrically conductive path to at least one electrical device in...

07/10/14 - 20140191342 - Mems sensor
There is provided a MEMS sensor including a signal processing LSI equipped with a temperature sensor for measuring temperature of a sensor, and a MEMS sensor chip overlaid on the signal processing LSI, the MEMS sensor chip being mounted on a heat generating part of the signal processing LSI. This...

07/03/14 - 20140183669 - Resonant sensor with asymmetric gapped cantilevers
A resonant sensor is provided. The resonant sensor may have a structure including a base portion, a mass portion, and a mechanical beam connecting the base portion to the mass portion. In addition, the structure may include a first sensing beam formed from a sensing material responsive to mechanical strain...

07/03/14 - 20140183670 - Capacitive intravascular pressure-sensing devices and associated systems and methods
Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices are guide wires that include a capacitive pressure-sensing component disposed at a distal portion of the guide wire. Methods of making such intravascular devices, including various manufacturing and assembling techniques, are disclosed. Systems associated with such intravascular...

06/26/14 - 20140175571 - Method for manufacturing a micromechanical system comprising a removal of sacrificial material through a hole in a margin region
A method for manufacturing a micromechanical system includes creating a sacrificial layer at a substrate surface. A structural material is deposited at a sacrificial layer surface and at a support structure for later supporting the structural material. At least one hole is created in the structural material extending from an...

06/26/14 - 20140175572 - Mems device with multiple electrodes and fabricating method thereof
A MEMS device with a first electrode, a second electrode and a third electrode is disclosed. These electrodes are disposed on a substrate in such a manner that (1) a pointing direction of the first electrode is in parallel with a normal direction of the substrate, (2) a pointing direction...

06/19/14 - 20140167188 - Reducing mems stiction by introduction of a carbon barrier
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based...

06/19/14 - 20140167189 - Reducing mems stiction by deposition of nanoclusters
A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of one or both of the surfaces. The increased roughness is provided by forming a...

06/19/14 - 20140167190 - Monolithic package for housing microelectromechanical systems
A sensor package for a microelectromechanical system (MEMS) is provided. The sensor package comprises a slot for receiving a MEMS, a bonding area in, or adjacent to, the slot for bonding the MEMS to the package and at least one package electrode to engage an electrode pad on the MEMS....

06/12/14 - 20140159174 - Flowmeter
The flowmeter includes a silicon substrate having a diaphragm where a heater is formed, an aluminum pad formed on a silicon substrate, an organic protective film laminated on the silicon substrate, and a mold resin that covers the silicon substrate. The diaphragm has an exposed portion exposed from the organic...

06/05/14 - 20140151820 - Gas-diffusion barriers for mems encapsulation
A technique for forming an encapsulated microelectromechanical system (MEMS) device includes forming an integrated circuit using a substrate, forming a barrier using the substrate, and forming a MEMS device using the substrate. The method includes encapsulating the MEMS device in a cavity. The barrier is disposed between the integrated circuit...

06/05/14 - 20140151821 - Mems structure with adaptable inter-substrate bond
A MEMS structure incorporating multiple joined substrates and a method for forming the MEMS structure are disclosed. An exemplary MEMS structure includes a first substrate having a bottom surface and a second substrate having a top surface substantially parallel to the bottom surface of the first substrate. The bottom surface...

06/05/14 - 20140151822 - Structured gap for a mems pressure sensor
A method of fabricating a pressure sensor includes performing a chemical vapor deposition (CVD) process to deposit a first sacrificial layer having a first thickness onto a substrate. A portion of the first sacrificial layer is then removed down to the substrate to form a central region of bare silicon....

06/05/14 - 20140151823 - Mems devices and methods of forming same
The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be...

05/15/14 - 20140131818 - Method for the prevention of suspended silicon structure etching during reactive ion etching
The present disclosure is directed to a device and its method of manufacture in which a protective region is formed below a suspended body. The protective region allows deep reactive ion etching of a bulk silicon body to form a MEMS device without encountering the various problems presented by damage...

05/15/14 - 20140131819 - Process for manufacturing a lid for an electronic device package, and lid for an electronic device package
A process for manufacturing a packaged microelectromechanical device includes: forming a lid having a face and a cavity open on the face; coating the face of the lid and walls of the cavity with a metal layer containing copper; and coating the metal layer with a protective layer....

05/15/14 - 20140131820 - Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
A method of bonding of germanium to aluminum between two substrates to create a robust electrical and mechanical contact is disclosed. An aluminum-germanium bond has the following unique combination of attributes: (1) it can form a hermetic seal; (2) it can be used to create an electrically conductive path between...

05/08/14 - 20140124877 - Conductive interconnect including an inorganic collar
A conductive interconnect includes an inorganic collar. The conductive interconnect includes a conductive support layer. The conductive interconnect also includes a conductive material on the conductive support layer. The conductive interconnect further includes an inorganic collar partially surrounding the conductive material. The inorganic collar is also disposed on sidewalls of...

05/01/14 - 20140117469 - Tsv-mems combination
A through-substrate via (TSV)-MEMS combination includes a TSV die including a substrate and a plurality of TSVs which extend of a full thickness of the substrate. The TSV die includes a top side surface including circuitry and top side bonding pads thereon, a bottom side surface including bottom side bonding...

05/01/14 - 20140117470 - Backside bulk silicon mems
An integrated circuit device that comprises a single semiconductor substrate, a device layer formed on a frontside of the single semiconductor substrate, a redistribution layer formed on a backside of the single semiconductor substrate, a through silicon via (TSV) formed within the single semiconductor substrate that is electrically coupled to...

05/01/14 - 20140117471 - Micromechanical component having a bond joint
A micromechanical component includes a substrate and a first oxide layer on the substrate, the first oxide layer having an aperture. The component further includes a conductive functional layer, which is provided on the first oxide layer in the region of the aperture, and a metal layer, which is provided...

05/01/14 - 20140117472 - Micromechanical component
A micromechanical component includes a first space in which a first sensor is situated and a second space in which a second sensor is situated, different pressures prevailing in the first and second spaces, one of the two spaces extending via a third space to a first lattice structure which...

04/24/14 - 20140110799 - Electronic device and its manufacturing method
An electronic device includes a substrate, a sidewall that is disposed on the substrate and forms a cavity, a first layer that is disposed on the sidewall and covers the cavity, a second layer that is formed on the first layer and has a region disposed outside an outline of...

04/24/14 - 20140110800 - Method for manufacturing a cap for a mems component, and hybrid integrated component having such a cap
A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate...

04/17/14 - 20140103460 - Mems device and method of manufacturing a mems device
A method for manufacturing a MEMS device is disclosed. Moreover a MEMS device and a module including a MEMS device are disclosed. An embodiment includes a method for manufacturing MEMS devices includes forming a MEMS stack on a first main surface of a substrate, forming a polymer layer on a...

04/17/14 - 20140103461 - Mems devices and fabrication methods thereof
A method for fabricating a MEMS device includes providing a micro-electro-mechanical system (MEMS) substrate having a sacrificial layer on a first side, providing a carrier including a plurality of cavities, bonding the first side of the MEMS substrate on the carrier, forming a first bonding material layer on a second...

04/17/14 - 20140103462 - Mems devices and methods for forming the same
A method includes forming a Micro-Electro-Mechanical System (MEMS) device on a front surface of a substrate. After the step of forming the MEMS device, a through-opening is formed in the substrate, wherein the through-opening is formed from a backside of the substrate. The through-opening is filled with a dielectric material,...

04/17/14 - 20140103463 - Mems sensor package systems and methods
Embodiments relate to sensor and sensing devices, systems and methods. In an embodiment, a micro-electromechanical system (MEMS) device comprises at least one sensor element; a framing element disposed around the at least one sensor element; at least one port defined by the framing element, the at least one port configured...