FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Wireless network throughput enhancement through channel aware scheduling

last patentdownload pdfdownload imgimage previewnext patent

20140016563 patent thumbnailZoom

Wireless network throughput enhancement through channel aware scheduling


A channel aware scheduler (CAS) is disclosed that takes advantage of changing wireless channel conditions in order to maximize aggregated system throughput. The CAS is aware of the different channel conditions for one or more stations and adjusts its scheduling of packet transmissions in light of the same. A related CAS algorithm may take advantage of that knowledge in order to increase aggregated system throughput while concurrently addressing other potential fairness constraints.
Related Terms: Addressing Algorithm Concurrent Enhancement Scheduling Wireless

Browse recent Ruckus Wireless, Inc. patents - Sunnyvale, CA, US
USPTO Applicaton #: #20140016563 - Class: 370328 (USPTO) -
Multiplex Communications > Communication Over Free Space >Having A Plurality Of Contiguous Regions Served By Respective Fixed Stations



Inventors: William S. Kish

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140016563, Wireless network throughput enhancement through channel aware scheduling.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 12/181,274 filed Jul. 28, 2008, which will issue as U.S. Pat. No. 8,547,899 on Oct. 1, 2013, which claims the priority benefit of U.S. provisional application No. 60/952,557 filed Jul. 28, 2007, the disclosures of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to communications networks. More particular, the present invention related to systems and method for increased data throughput in communications networks.

2. Description of the Related Art

A wireless channel is generally understood as a pathway between two communication endpoints. Through a wireless channel, the communication of any number of forms of data may take place. The efficient and effective communication of data is, however, subject to any number of characteristics of a particular wireless channel.

For example, a wireless channel with low throughput would not be recommended for the communication of data related to a high-definition television program. Similarly, the use of a wireless channel with a large amount of available bandwidth may be better utilized in the context of time-sensitive data transfers (e.g., voice communications) rather than the exchange of low priority and low-bandwidth background data queries.

Characteristics of a wireless channel may vary over time. For example, a wireless channel that at one moment has available bandwidth may subsequently be subjected to bottlenecks and dropped data packets thus requiring retransmission of the same. These variances in network characteristics may be a result of, for example, terminal mobility, multipath fading, or interference.

With respect to terminal mobility, a terminal may (while in motion) access wireless services from different locations. The mobility of the terminal requires the network to expend resources related to identifying and locating that terminal. The accessing of the network at different locales over time in conjunction with the need of the network to identify and locate the terminal may affect the quality of a wireless signal in that network.

Multipath fading involves the phenomenon of multipath propagation whereby a radio signal arrives at a receiving station (e.g., an antenna), at different times, via two or more paths. Multipath propagation may be induced by the refracting and reflecting of a wireless signal by various objects in the wireless environment (e.g., walls and metal objects). As a result of multipath propagation, the wireless signal is distorted thereby resulting in a deteriorated communications experience, which may include jitter or ghosting in the case of audio or video content.

Interference, broadly stated, may be mobile or static. In the case of mobile interference, the reception of a signal by a first mobile device (e.g., a wireless terminal) may be impeded or degraded by the transmission of a signal by another mobile device. Static interference is representative of the superposition of white noise (i.e., static) and other disturbing influences on a wireless signal. These influences are inclusive of thermal noise, electronic noise from receiver input circuits, and radiated electromagnetic noise that might be picked up by a receiving station's antenna.

FIG. 1A illustrates how characteristics of a wireless channel may vary over time in light of the aforementioned terminal mobility, multipath fading, and interference. FIG. 1A illustrates a wireless channel 100 where signal quality 110 between an access point (AP) and station are illustrated as a function of time 120. As can be seen from FIG. 1A, signal quality 110 is less at T+1 than at T+2. The signal quality 110 for T+1 and T+2 is less than the signal quality 110 illustrated at T+3, which is nearly equivalent to that of the signal quality 110 exhibited at T+4. Signal quality 110 improves at T+5 while experiencing a significant decrease at T+6.

Further complicating the understanding of wireless channel characteristics (and the optimal use of those channels) is that channel conditions often lack correlation amongst one another in a network of stations. The lack of correlation may be a result of different distances from an AP to a particular station, distances from a station (or the AP) to a particular source of interference, the movement of a mobile terminal or station, as well as varying multipath fading effects. FIG. 1B is exemplary in this regard with respect to illustrating the signal quality 110 between the aforementioned AP and Station A (130) and the AP and Station B (140). As shown in FIG. 1B, there is no immediately recognizable correlation in signal quality vis-a-vis the AP and the differing stations (130/140).

One attempt at managing variances in wireless channel characteristics, especially as they pertain to different stations, has been through the use of a scheduler. Schedulers may be embodied in hardware and/or software components—the latter being executable from memory or a storage device by a corresponding processing device—with respect to providing scheduling policies, rules, procedure, or other criteria in making scheduling decisions. A scheduler may, in light of the aforementioned policies or criteria and a given set of packets, select particular packets for serial transmission over a particular wireless channel.

Different scheduling policies may be used in an attempt to ensure a communications network's ability to provide different quality of service (QOS) guarantees. Policies may include strict priority (SP) where a particular station queue is always allocated bandwidth and/or transmitted before other queues. An alternative policy includes round robin (RR) scheduling, which assigns bandwidth and transmits packets in equal portion, in order, and without priority to a particular station queue.

Weighted round robin (WRR), on the other hand, is a best-effort scheduling discipline (i.e., the network does not provide any guarantees that data is delivered or that a user is given a guaranteed QOS level or priority). Through WRR scheduling, station queues can be assigned a weight—an integer value that might indicate capacity or priority. Station queues with higher weights have their packets transmitted prior to those with lesser weights. All queues are eventually given regular transmission access to a channel albeit it those queues with higher weight will get more transmission access attempts than those with lesser weights.

Yet another scheduling policy is fair queuing (FQ), which allows several packet flows to fairly share link capacity. Fair queuing differs from first-in-first-out (FIFO) (i.e., what comes in first is handled first and what comes in next waits until the first is finished) in that an ill-behaved flow that consists of, for example, large data packets or a large number of packets will punish itself and not other packet flows. In FQ scheduling, in order to decide which packet should be forwarded first, the FQ algorithm estimates a virtual finishing time of all candidate packets (i.e., the packets at the head of all non-empty queues) based on, for example, the arrival time of the packet, the packet size, and the number of queues. The FQ scheduling algorithm or policy then compares the virtual finishing time and selects the minimum one. The packet with the minimum virtual finishing time is transmitted.

A still further scheduling policy is weighted fair queuing (WFQ), which allows different scheduling priorities to be statistically multiplexed. WFQ is a generalization of the aforementioned FQ algorithm where each data flow has a separate FIFO queue. Whereas the aforementioned ill-behaved queue will only punish itself, WFQ allows different sessions to have different service shares. If N data flows currently are active, with weights ω1, ω2 . . . ωN, data flow number i will achieve an average data rate of

R   ω i ( ω 1 | ω 2 | …  ω N )

An end-to-end delay bound can be guaranteed in WFQ scheduling. By dynamically regulating WFQ weights, this policy can be used to control QOS and achieve a guaranteed data rate.

Typical wireless devices (e.g., an 802.11x compliant device) implement a simple class and/or priority scheduling mechanism with a FIFO queue per each traffic class. An example of such a mechanism 200 is illustrated in FIG. 2. The scheduling mechanism 200 of FIG. 2 illustrates four classes of traffic priority: voice (230), video (240), best-effort (250), and background (260). While the voice, video, best-effort, and background represent the typical four traffic priorities, the actual number of classes may vary in order to accommodate, for example, additional traffic classes and management traffic.

In the scheduling mechanism 200 of FIG. 2, packets are introduced to the wireless device via a network/input interface 210. It should be noted that certain hardware components (e.g. a processor or memory) are not illustrated in that one skilled in the art will appreciate and understand the requisite components to implement the various applications disclosed herein. Packets may be received from another wireless device, a network backbone, a router, or a primary source of content that has been converted into data packets for transmission.

Packets are then routed to the classifier 220. The classifier 220 may identify packets based on application layer data regardless of port. The classifier 220 may alternatively identify packets based on Internet Protocol (IP) address, port numbers, and so on. Packet classification based on multiple fields may be implemented using basic search algorithms, geometric algorithms, heuristic algorithms, or hardware-specific search algorithms. A variety of methodologies for packet classification are generally known in the art.

Once classified by classifier 220, packets are then routed to an appropriate queue: voice, video, best-effort, background (230-260). The priority scheduler 270 then schedules the classified and queued packets. In the priority based queuing and scheduling mechanism 200 of FIG. 2, all packet traffic of a specific class (e.g., voice (230) is subjected to FIFO queuing. Scheduling is done strictly by priority (SP). As such, priority N (e.g., voice (230)) must be empty before priority N+1 (e.g., video (240)) is allowed to transmit. Packets are then transmitted or further routed via the appropriate network/output interface 280.

Problems exist with respect to prior art scheduling methodologies based on priority queuing with per class FIFO. Channel aware scheduling (as discussed in further detail below) may not be implemented in this context. For example, traffic to different stations is interleaved within each FIFO queue. Further, only one packet is available at any given time—the packet at the head of the highest priority queue.

Typical prior art scheduler implementations also blindly retransmit the head end packet from the highest priority active queue until that packet is either successfully acknowledged by the recipient or some maximum number of retransmissions occurs. This blind retransmission causes head-of-line blocking. As a result, poor system performance results and, in many circumstances, clients may become completely impaired.

SUMMARY

OF THE PRESENTLY CLAIMED INVENTION

An embodiment of the presently claimed invention includes a system for increasing wireless network throughput. The system includes a classifier configured to assign a packet to one of a plurality of transmission queues. The system further includes a first scheduling module and a second scheduling module. The first scheduling module is stored in a computer-readable medium and executable by a processing device to select an assigned packet for transmission from one of the plurality of transmission queues in accordance with a strict priority schedule. The second scheduling module is likewise stored in a computer-readable medium and executable to select a priority scheduled packet for transmission, wherein the selection is made in accordance with a weighted scheduling technique.

In a second embodiment of the presently claimed invention, a method for increasing wireless throughput is disclosed. The method includes the steps of assigning a packet to one of a plurality of transmission queues; selecting an assigned packet for transmission from one of the plurality of transmission queues in accordance with a priority schedule; selecting a priority scheduled packet for transmission in accordance with a weighted scheduling technique; and transmitting the packet.

A third embodiment is for a computer-readable storage medium having embodied thereon a program. The program is executable by a processing device to perform a method for increasing wireless throughput, the method includes the steps of assigning a packet to one of a plurality of transmission queues; selecting an assigned packet for transmission from one of the plurality of transmission queues in accordance with a priority schedule; selecting a priority scheduled packet for transmission in accordance with a weighted scheduling technique; and transmitting the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a wireless channel where signal quality between an access point and station are sown as a function of time.

FIG. 1B illustrates signal quality between an access point and two stations.

FIG. 2 illustrates a class/priority scheduling mechanism with a FIFO queue for each traffic class.

FIG. 3 illustrates the biasing of a scheduler in a channel aware scheduler network environment involving an AP and two stations.

FIG. 4 illustrates an embodiment of a channel aware scheduling mechanism utilizing hierarchical schedulers.

FIG. 5 illustrates a method for channel aware scheduling transmission including a channel aware scheduler mechanism utilizing a deferred retransmission module.

FIG. 6 illustrates queue weighting as may occur in the context of the channel aware scheduler mechanism of FIG. 4 and the corresponding method of FIG. 5.

DETAILED DESCRIPTION

The presently disclosed invention utilizes channel aware scheduling. Through channel aware scheduling, an optimized scheduler—a channel aware scheduler (CAS)—takes advantage of changing wireless channel conditions in order to maximize aggregated system throughput. A CAS is aware of the different channel conditions for one or more stations and adjusts its scheduling of packet transmissions in light of the same. The CAS algorithm may take advantage of that knowledge in order to increase aggregated system throughput while concurrently addressing other potential fairness constraints.

FIG. 3 illustrates an example of how a CAS may be beneficial in a network environment 300 involving an AP and two stations (A and B). Based on the particular signal quality for each station (A or B) over time (T=0, T+1, T+N), the scheduler is biased toward one station or the other (i.e., the scheduler is aware of the quality of both channels). For example, at time T+1, +2 and, +3, the scheduler is biased toward station B while at time T+4 and T+5, the scheduler is biased to station A.

The CAS mechanism of the present invention allows for finer queuing and scheduling granularity with respect to individual stations and packet flows. An embodiment of the present invention utilizes hierarchical scheduling. In a first level of the hierarchy, an SP scheduling algorithm may be employed as is common to enterprise and service-provider class networking equipment. In a second level, the CAS mechanism may utilize WRR or WFQ scheduling algorithms as described above.

FIG. 4 illustrates an embodiment of a CAS mechanism 400 utilizing the aforementioned hierarchical schedulers. Packets are received at classifier 410 following initial receipt by a network/input interface. Classifier 410 may operate in a manner similar to classifier 220 as illustrated in FIG. 2.

Following classification of an incoming packet at a wireless device implementing the CAS mechanism 400 of FIG. 4, the packet is routed to a first part of the scheduling hierarchy (i.e., a second level scheduler). In FIG. 4, this first portion of the scheduling hierarchy is represented by a queue with an associated priority. The CAS mechanism 400 of FIG. 4 illustrates three priority queues, which may be representative of voice, video, and background (420-440, respectively). Differing numbers of priority queues may be implemented subject to the particular type of packet flows being received at the CAS mechanism 400. For example, if the wireless device implementing CAS mechanism 400 is dedicated to the delivery of Internet Packet Television (IPTV) content, the voice queue (420) may be omitted.

Corresponding to each priority queue (420-440) in FIG. 4 is one or more station queues (420A-420C; 430A-430C; and 440A-440C). Each of the station queues 420A-420C; 430A-430C; and 440A-440C operates in conjunction with a WRR mechanism (450-470). Utilizing an associated WRR mechanism, each station queue 420A-420C; 430A-430C; and 440A-440C is assigned a weight indicative of capacity or priority. Station queues 420A-420C; 430A-430C; and 440A-440C with higher weights will have their packets transmitted prior to those with lesser weights. Weighting of a station queue is discussed in greater detail with respect to FIG. 6 below.

Following assignment to a priority and weighted station queue in the first portion of the hierarchy, the priority scheduler 480 of the second portion of the hierarchy (i.e., the first level scheduler) assumes responsibility for scheduling the transmission of the classified, prioritized, weighted, and queued packets. The priority scheduler 480 of FIG. 4 may operate in a fashion similar to that of the priority scheduler 270 in FIG. 2. Packets are then transmitted or further routed via an appropriate network/output interface.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Wireless network throughput enhancement through channel aware scheduling patent application.
###
monitor keywords

Browse recent Ruckus Wireless, Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Wireless network throughput enhancement through channel aware scheduling or other areas of interest.
###


Previous Patent Application:
Using encapsulation headers to indicate internet protocol packet fragmentation in cellular networks
Next Patent Application:
Apparatus and corresponding method for allocating a component carrier to a cell in a communication system
Industry Class:
Multiplex communications
Thank you for viewing the Wireless network throughput enhancement through channel aware scheduling patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.51059 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2404
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20140016563 A1
Publish Date
01/16/2014
Document #
14028323
File Date
09/16/2013
USPTO Class
370328
Other USPTO Classes
International Class
04W72/12
Drawings
8


Your Message Here(14K)


Addressing
Algorithm
Concurrent
Enhancement
Scheduling
Wireless


Follow us on Twitter
twitter icon@FreshPatents

Ruckus Wireless, Inc.

Browse recent Ruckus Wireless, Inc. patents

Multiplex Communications   Communication Over Free Space   Having A Plurality Of Contiguous Regions Served By Respective Fixed Stations