FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Organic compositions to treat beta-enac-related diseases

last patentdownload pdfdownload imgimage previewnext patent


Title: Organic compositions to treat beta-enac-related diseases.
Abstract: The present disclosure relates to RNAi agents useful in methods of treating Beta-ENaC-related diseases such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle's syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension, using a therapeutically effective amount of a RNAi agent to Beta-ENaC. ...


Browse recent Novartis Ag patents - Basel, CH
Inventors: Antonin DE FOUGEROLLES, John L. DIENER, Emma HICKMAN, Gregory HINKLE, Stuart MILSTEIN, Anne-Marie PULICHINO, Andrew SPRAGUE
USPTO Applicaton #: #20120115934 - Class: 514 44 A (USPTO) - 05/10/12 - Class 514 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120115934, Organic compositions to treat beta-enac-related diseases.

last patentpdficondownload pdfimage previewnext patent

This application is a divisional application of U.S. Utility patent application Ser. No. 13/090,580 filed 20 Apr. 2011, which claims priority to U.S. Provisional Application Ser. No. 61/333,398 filed 11 May 2010 and U.S. Provisional Application Ser. No. 61/327,379 filed 23 Apr. 2010, the contents of which are incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

The mucosal surface between the environment and the body has many protective mechanisms. One form of defense is cleansing the surface with liquid. The quantity of liquid reflects the balance between epithelial liquid secretion (which often reflects anion secretion coupled with water and a cation counter-ion) and liquid absorption (which often reflects Na+ absorption, coupled with water and counter anion). Many diseases of mucosal surfaces are caused by too little liquid, as caused by an imbalance between secretion (too little) and absorption (too much). One method to balance the liquid layer is to decrease Na+ channel-mediated liquid absorption.

Nonvoltage-gated, amiloride-sensitive sodium channels control fluid and electrolyte transport across epithelia in many organs. The apical membranes of many tight epithelia contain sodium channels that are primarily characterized by their high affinity to the diuretic blocker amiloride. These channels mediate the first step of active sodium reabsorption essential for the maintenance of body salt and water homeostasis. In vertebrates, the channels control reabsorption of sodium in the kidney, colon, lung and sweat glands; they also play a role in taste perception.

The rate-limiting step of Na+ and liquid absorption is mediated by the epithelial sodium (Na+) channel (ENaC). These sodium channels are heteromeric complexes consisting of 3 subunits: Alpha-ENaC, Beta-ENaC, and Gamma-ENaC.

Beta-ENaC (also known as SCNN1B) encodes the beta subunit of this sodium channel, and mutations in and/or altered expression of this gene have been associated with several diseases (and/or associated with treatments of diseases), including cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle\'s syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension.

There exists the need for treatments related to Beta-ENaC-related diseases.

BRIEF

SUMMARY

OF THE INVENTION

The present disclosure encompasses RNAi agents to Beta-ENaC, which are useful in the treatment of Beta-ENaC-related diseases, such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle\'s syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension. The present disclosure also encompasses a method of treating a human subject having a pathological state mediated at least in part by alpha-ENaC expression, the method comprising the step of administering to the subject a therapeutically effective amount of a RNAi agent Beta-ENaC.

The present disclosure provides specific RNAi agents and methods that are useful in reducing Beta-ENaC levels in a subject, e.g., a mammal, such as a human. The present disclosure specifically provides double-stranded RNAi agents comprising at least 15 or more contiguous nucleotides of Beta-ENaC. In particular, the present disclosure provides agents comprising sequences of 15 or more contiguous nucleotides differing by 0, 1, 2 or 3 from those of the RNAi agents provided, e.g., in Table 1. The RNAi agents particularly can in one embodiment comprise less than 30 nucleotides per strand, e.g., such as 18-23 nucleotides, and/or 19-21 nucleotides, and/or such as those provided, e.g., in Table 1.

The double-stranded RNAi agents can have blunt ends or overhangs of 1, 2, 3 or 4 nucleotides (i.e., 1-4 nt) from one or both 3′ and/or 5′ ends. The double-stranded RNAi agents can also optionally comprise one or two 3′ caps and/or one or more modified nucleotides. Modified variants of sequences as provided herein include those that are otherwise identical but contain substitutions of a naturally occurring nucleotide for a corresponding modified nucleotide.

Further, the RNAi agent can either contain only naturally-occurring ribonucleotide subunits, or one or more modifications to the sugar, phosphate or base of one or more of the replacement nucleotide subunits, whether they comprise ribonucleotide subunits or deoxyribonucleotide subunits. In one embodiment, modified variants of the disclosed RNAi agents include RNAi agents with the same sequence, but with one or more modifications to one or more of the sugar, phosphate or base of one or more of the nucleotide subunits. In one embodiment, the modifications improve efficacy, stability and/or reduce immunogenicity of the RNAi agent. One aspect of the present disclosure relates to a double-stranded oligonucleotide comprising at least one non-natural nucleobase. In certain embodiments, the non-natural nucleobase is difluorotolyl, nitroindolyl, nitropyrrolyl, or nitroimidazolyl. In a particular embodiment, the non-natural nucleobase is difluorotolyl. In certain embodiments, only one of the two oligonucleotide strands contains a non-natural nucleobase. In certain embodiments, both of the oligonucleotide strands contain a non-natural nucleobase.

The RNAi agent(s) can optionally be attached to a ligand selected to improve one or more characteristic, such as, e.g., stability, distribution and/or cellular uptake of the agent, e.g., cholesterol or a derivative thereof. The RNAi agent(s) can be isolated or be part of a pharmaceutical composition used for the methods described herein. Particularly, the pharmaceutical composition can be formulated for delivery to the lungs or nasal passage or formulated for parental administration. The pharmaceutical compositions can optionally comprise two or more RNAi agents, each one directed to the same or a different segment of the Beta-ENaC mRNA. Optionally, the pharmaceutical compositions can further comprise or be used in conjunction with any known treatment for any Beta-ENaC-related disease.

The present disclosure further provides methods for reducing the level of Beta-ENaC mRNA in a cell, particularly in the case of a disease characterized by over-expression or hyper-activity of ENaC. The present disclosure also encompasses a method of treating a human subject having a pathological state mediated at least in part by Beta-ENaC expression, the method comprising the step of administering to the subject a therapeutically effective amount of a RNAi agent Beta-ENaC. Such methods comprise the step of administering one of the RNAi agents of the present disclosure to a subject, as further described below. The present methods utilize the cellular mechanisms involved in RNA interference to selectively degrade the target RNA in a cell and are comprised of the step of contacting a cell with one of the RNAi agents of the present disclosure. Such methods can be performed directly on a cell or can be performed on a mammalian subject by administering to a subject one of the RNAi agents/pharmaceutical compositions of the present disclosure. Reduction of target Beta-ENaC RNA in a cell results in a reduction in the amount of encoded Beta-ENaC protein produced. In an organism, this can result in reduction of epithelial potential difference, balanced fluid absorption and increased mucociliary clearance.

The methods and compositions of the present disclosure, e.g., the methods and

Beta-ENaC RNAi agent compositions, can be used with any dosage and/or formulation described herein, as well as with any route of administration described herein.

The details of one or more embodiments of the present disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the present disclosure will be apparent from this description, the drawings, and from the claims.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1A-1B depict the ability of RNAi agents AD20807, AD20826, AD20832, AS20834, AD20848, and AD20861 to knock-down Beta-ENaC activity in vivo.

FIGS. 2A-2C depict the in vitro effect of Beta-ENaC RNAi Agent AD20832 on ENaC channel functional activity in human bronchial epithelial cells.

DETAILED DESCRIPTION

OF THE INVENTION

The present disclosure encompasses RNAi agents to Beta-ENaC, which are useful in treatment of Beta-ENaC-related diseases (e.g., diseases associated with mutations in and/or altered expression, level and/or activity of Beta-ENaC, and/or diseases treatable by modulating the expression, level and/or activity of Beta-ENaC), such as cystic fibrosis, pseudohypoaldosteronism type 1 (PHA1), Liddle\'s syndrome, hypertension, alkalosis, hypokalemia, and obesity-associated hypertension. The present disclosure also provides methods of treating a human subject having a pathological state mediated at least in part by Beta-ENaC expression, the method comprising the step of administering to the subject a therapeutically effective amount of a RNAi agent Beta-ENaC.

Various Embodiments of the Present Disclosure Include:

A RNAi Agent Comprising an Antisense Strand Described Herein.

In one embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent specific to Beta-ENaC (or any set of overlapping RNAi agents specific to Beta-ENaC) provided, e.g., in Table 1. In another embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent from any sequence provided herein. In another embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a first strand and a second strand, wherein the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the first strand, and the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand of any RNAi agent provided herein.

Particular duplexes include the following, wherein each duplex comprises a set of SEQ ID NOs, wherein the first SEQ ID NO corresponds to a first strand (e.g., a sense strand), and the second SEQ ID NO corresponds to a second strand (e.g., an anti-sense strand): AD-20805 (SEQ ID NOs. 111 and 112); AD-20806 (SEQ ID NOs. 113 and 114); AD-20807 (SEQ ID NOs. 115 and 116); AD-20808 (SEQ ID NOs. 117 and 118); AD-20809 (SEQ ID NOs. 119 and 120); AD-20810 (SEQ ID NOs. 121 and 122); AD-20811 (SEQ ID NOs. 123 and 124); AD-20812 (SEQ ID NOs. 125 and 126); AD-20813 (SEQ ID NOs. 127 and 128); AD-20814 (SEQ ID NOs. 129 and 130); AD-20815 (SEQ ID NOs. 131 and 132); AD-20816 (SEQ ID NOs. 133 and 134); AD-20817 (SEQ ID NOs. 135 and 136); AD-20818 (SEQ ID NOs. 137 and 138); AD-20819 (SEQ ID NOs. 139 and 140); AD-20820 (SEQ ID NOs. 141 and 142); AD-20821 (SEQ ID NOs. 143 and 144); AD-20822 (SEQ ID NOs. 145 and 146); AD-20823 (SEQ ID NOs. 147 and 148); AD-20824 (SEQ ID NOs. 149 and 150); AD-20825 (SEQ ID NOs. 151 and 152); AD-20826 (SEQ ID NOs. 153 and 154); AD-20827 (SEQ ID NOs. 155 and 156); AD-20828 (SEQ ID NOs. 157 and 158); AD-20829 (SEQ ID NOs. 159 and 160); AD-20830 (SEQ ID NOs. 161 and 162); AD-20831 (SEQ ID NOs. 163 and 164); AD-20832 (SEQ ID NOs. 165 and 166); AD-20833 (SEQ ID NOs. 167 and 168); AD-20834 (SEQ ID NOs. 169 and 170); AD-20835 (SEQ ID NOs. 171 and 172); AD-20836 (SEQ ID NOs. 173 and 174); AD-20837 (SEQ ID NOs. 175 and 176); AD-20838 (SEQ ID NOs. 177 and 178); AD-20839 (SEQ ID NOs. 179 and 180); AD-20840 (SEQ ID NOs. 181 and 182); AD-20841 (SEQ ID NOs. 183 and 184); AD-20842 (SEQ ID NOs. 185 and 186); AD-20843 (SEQ ID NOs. 187 and 188); AD-20844 (SEQ ID NOs. 189 and 190); AD-20845 (SEQ ID NOs. 191 and 192); AD-20846 (SEQ ID NOs. 193 and 194); AD-20847 (SEQ ID NOs. 195 and 196); AD-20848 (SEQ ID NOs. 197 and 198); AD-20849 (SEQ ID NOs. 199 and 200); AD-20850 (SEQ ID NOs. 201 and 202); AD-20851 (SEQ ID NOs. 203 and 204); AD-20852 (SEQ ID NOs. 205 and 206); AD-20861 (SEQ ID NOs. 207 and 208); AD-20862 (SEQ ID NOs. 209 and 210); AD-20863 (SEQ ID NOs. 211 and 212); AD-20864 (SEQ ID NOs. 213 and 214); AD-20865 (SEQ ID NOs. 215 and 216); AD-20866 (SEQ ID NOs. 217 and 218); and AD-20867 (SEQ ID NOs. 219 and 220), and modified variants thereof.

One embodiment provides modified variants of particular duplexes, wherein each duplex comprises a set of SEQ ID NOs, wherein the first SEQ ID NO corresponds to a first strand (e.g., a sense strand), and the second SEQ ID NO corresponds to a second strand (e.g., an anti-sense strand) that are selected from the group consisting of: AD-20805 (SEQ ID NOs. 1 and 2); AD-20806 (SEQ ID NOs. 3 and 4); AD-20807 (SEQ ID NOs. 5 and 6); AD-20808 (SEQ ID NOs. 7 and 8); AD-20809 (SEQ ID NOs. 9 and 10); AD-20810 (SEQ ID NOs. 11 and 12); AD-20811 (SEQ ID NOs. 13 and 14); AD-20812 (SEQ ID NOs. 15 and 16); AD-20813 (SEQ ID NOs. 17 and 18); AD-20814 (SEQ ID NOs. 19 and 20); AD-20815 (SEQ ID NOs. 21 and 22); AD-20816 (SEQ ID NOs. 23 and 24); AD-20817 (SEQ ID NOs. 25 and 26); AD-20818 (SEQ ID NOs. 27 and 28); AD-20819 (SEQ ID NOs. 29 and 30); AD-20820 (SEQ ID NOs. 31 and 32); AD-20821 (SEQ ID NOs. 33 and 34); AD-20822 (SEQ ID NOs. 35 and 36); AD-20823 (SEQ ID NOs. 37 and 38); AD-20824 (SEQ ID NOs. 39 and 40); AD-20825 (SEQ ID NOs. 41 and 42); AD-20826 (SEQ ID NOs. 43 and 44); AD-20827 (SEQ ID NOs. 45 and 46); AD-20828 (SEQ ID NOs. 47 and 48); AD-20829 (SEQ ID NOs. 49 and 50); AD-20830 (SEQ ID NOs. 51 and 52); AD-20831 (SEQ ID NOs. 53 and 54); AD-20832 (SEQ ID NOs. 55 and 56); AD-20833 (SEQ ID NOs. 57 and 58); AD-20834 (SEQ ID NOs. 59 and 60); AD-20835 (SEQ ID NOs. 61 and 62); AD-20836 (SEQ ID NOs. 63 and 64); AD-20837 (SEQ ID NOs. 65 and 66); AD-20838 (SEQ ID NOs. 67 and 68); AD-20839 (SEQ ID NOs. 69 and 70); AD-20840 (SEQ ID NOs. 71 and 72); AD-20841 (SEQ ID NOs. 73 and 74); AD-20842 (SEQ ID NOs. 75 and 76); AD-20843 (SEQ ID NOs. 77 and 78); AD-20844 (SEQ ID NOs. 79 and 80); AD-20845 (SEQ ID NOs. 81 and 82); AD-20846 (SEQ ID NOs. 83 and 84); AD-20847 (SEQ ID NOs. 85 and 86); AD-20848 (SEQ ID NOs. 87 and 88); AD-20849 (SEQ ID NOs. 89 and 90); AD-20850 (SEQ ID NOs. 91 and 92); AD-20851 (SEQ ID NOs. 93 and 94); AD-20852 (SEQ ID NOs. 95 and 96); AD-20861 (SEQ ID NOs. 97 and 98); AD-20862 (SEQ ID NOs. 99 and 100); AD-20863 (SEQ ID NOs. 101 and 102); AD-20864 (SEQ ID NOs. 103 and 104); AD-20865 (SEQ ID NOs. 105 and 106); AD-20866 (SEQ ID NOs. 107 and 108); and AD-20867 (SEQ ID NOs. 109 and 110).

Particular Compositions

In one embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from any sequence (or overlapping set of sequences) provided in a table here (e.g., Table 1). In one embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a sense strand and an antisense strand, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the antisense strand of a RNAi agent to Beta-ENaC selected from any sequence (or overlapping set of sequences) provided in a table here (e.g., Table 1). In another embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a sense and an anti-sense strand, wherein the anti-sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the anti-sense strand of a RNAi agent from any sequence provided herein. In another embodiment, the present disclosure relates to a composition comprising a RNAi agent comprising a first strand and a second strand, wherein the first strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the first strand, and the second strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the sequence of the second strand of any RNAi agent provided herein. Particular duplexes include those specific duplexes provided above and as listed in any one or more of Table 1. Additional modified sequences (e.g., sequences comprising one or more modified base) of each of the compositions above are also contemplated as part of the present disclosure.

Table A1, below, provides the SEQ ID NOs for the unmodified and an example modified sequence of the sense and an anti-sense strands of various RNAi agents to Beta-ENaC. The base composition of each is specific sequence represented by the SEQ ID NOs is provided in more detail in Table 1, and portions thereof are provided in Table 2.

TABLE A1 SEQ ID NOs for a first and a second strand (e.g., sense (“SS”) and anti- sense (“AS”) strand) for RNAi agents to Beta-ENaC

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Organic compositions to treat beta-enac-related diseases patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Organic compositions to treat beta-enac-related diseases or other areas of interest.
###


Previous Patent Application:
Organic compositions to treat beta-enac-related diseases
Next Patent Application:
Pharmaceutical agent for preventing cell death
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Organic compositions to treat beta-enac-related diseases patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.44525 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2807
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120115934 A1
Publish Date
05/10/2012
Document #
File Date
09/17/2014
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Pseudohypoaldosteronism


Follow us on Twitter
twitter icon@FreshPatents