FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2012: 3 views
Updated: August 12 2014
Browse: Medtronic patents
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Integrated patient care

last patentdownload pdfdownload imgimage previewnext patent


Title: Integrated patient care.
Abstract: A therapy regimen, e.g., a contingent medication prescription, may be created and automatically distributed to a patient via an integrated patient care system. A clinician may create therapy instructions by at least associating patient conditions with one or more therapy regimens, e.g., medication prescriptions. In some examples, the integrated patient care system may present historical condition data to the clinician to aid the clinician with creating and/or updating the therapy instructions specific to the patient. A therapy module of the integrated patient care system may use the therapy instructions to automatically select a therapy regimen from the therapy instructions based on a patient condition detected based on a sensed physiological parameter. The physiological parameter of the patient may be sensed by an implanted or external sensor. In some examples, the therapy regimen can be presented to the patient according to a predetermined schedule or in response to the detected condition. ...


Medtronic, Inc. - Browse recent Medtronic patents - Minneapolis, MN, US
Inventors: Tommy D. Bennett, Yong Kyun Cho, Randolph M. Biallas
USPTO Applicaton #: #20120108984 - Class: 600485 (USPTO) - 05/03/12 - Class 600 
Surgery > Diagnostic Testing >Cardiovascular >Measuring Pressure In Heart Or Blood Vessel

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120108984, Integrated patient care.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The disclosure relates to monitoring and treating a patient\'s medical condition.

BACKGROUND

Some medical conditions may require frequent monitoring and adjustment of treatment regimens. For example, the severity of and/or symptoms associated with a particular medical condition may have a propensity to change over time. Clinicians or other healthcare professionals may frequently monitor the patient\'s condition and adjust one or more treatment regimens when needed to effectively manage the medical condition.

SUMMARY

In general, this disclosure is directed to an integrated patient care system and techniques performed by the integrated patient care system for monitoring and treating a medical condition of a patient. A therapy regimen, e.g., a contingent medication prescription, may be created and automatically distributed to a patient via the integrated patient care system. The system may allow a clinician to create therapy instructions that associate patient conditions with one or more therapy regimens, e.g., contingent medication prescriptions. The system may provide historical condition data to the clinician to facilitate the creation or updating of the therapy instructions. Once the therapy instructions are created, a therapy module, e.g., an external computing device, may automatically select a therapy regimen from a plurality of therapy regimens for delivery to the patient based on a patient condition detected based on a physiological parameter sensed by one or more sensors. The sensor may be an implanted or external sensor that senses at least one physiological parameter, e.g., pulmonary artery pressure or trans-thoracic impedance. After the therapy regimen is selected, the system may present the therapy regimen to the patient, e.g., according to a predetermined schedule, in response to the detected condition, or at the request of the patient.

In one example, the disclosure is directed to a system that includes a clinician module configured to receive input that defines one or more therapy instructions specific to a patient, a sensor configured to sense a physiological parameter indicative of one or more conditions of the patient, and a processor configured to automatically select a therapy regimen from a plurality of stored therapy regimens based on the one or more conditions indicated by the sensed physiological parameter and the one or more therapy instructions. The system also includes a patient display configured to present the selected therapy regimen to the patient.

In another example, the disclosure is directed to a method that includes receiving input from a clinician at a clinician module, wherein the input defines one or more therapy instructions specific to a patient, and sensing a physiological parameter indicative of one or more conditions of the patient with a sensor. The method also includes, with a processor, automatically selecting a therapy regimen from a plurality of stored therapy regimens based on the one or more conditions indicated by the sensed physiological parameter and the one or more therapy instructions, and presenting the selected therapy regimen to the patient via a patient display.

In another example, the disclosure is directed to a system that includes means for receiving input from a clinician that defines one or more therapy instructions specific to a patient, means for sensing a physiological parameter indicative of one or more conditions of the patient, and means for automatically selecting a therapy regimen from a plurality of stored therapy regimens based on the one or more conditions indicated by the sensed physiological parameter and the one or more therapy instructions. The system also includes means for presenting the selected therapy regimen to the patient.

In another aspect, the disclosure is directed to an article of manufacture comprising a computer-readable storage medium. The computer-readable storage medium comprises computer-readable instructions for execution by a processor. The instructions cause a programmable processor to perform any part of the techniques described herein. The instructions may be, for example, software instructions, such as those used to define a software or computer program. The computer-readable medium may be a computer-readable storage medium such as a storage device (e.g., a disk drive, or an optical drive), memory (e.g., a Flash memory, read only memory (ROM), or random access memory (RAM)) or any other type of volatile or non-volatile memory that stores instructions (e.g., in the form of a computer program or other executable) to cause a programmable processor to perform the techniques described herein. The computer-readable medium may be nontransitory.

The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a conceptual diagram of an integrated patient care system for monitoring and treating a disorder of a patient.

FIG. 2 is a conceptual diagram of an integrated patient care system for monitoring and treating congestive heart failure of a patient.

FIG. 3 is a conceptual diagram illustrating an implanted sensor for sensing a condition of a patient.

FIG. 4 is a flow diagram illustrating an example technique for receiving therapy instructions from a clinician.

FIG. 5 is a flow diagram illustrating an example technique for displaying historical condition data and receiving therapy instructions from a clinician.

FIG. 6 is a conceptual diagram illustrating an example screen that may display historical condition data and receive therapy instructions from a clinician in the form of the pressure range check instruction.

FIG. 7 is a conceptual diagram illustrating an example screen that may receive therapy instructions specifying contingent prescriptions from a clinician.

FIG. 8 is a flow diagram illustrating an example technique for selecting a therapy regimen from therapy instructions based on a detected patient condition.

FIG. 9 is a flow diagram illustrating an example technique for selecting and transmitting a therapy regimen to a patient, where the therapy regimen is configured to treat congestive heart failure.

FIG. 10 is a flow diagram illustrating an example technique for detecting and transmitting a detected condition to the therapy module.

FIG. 11 is a flow diagram illustrating an example technique performed by the patient module illustrated in FIG. 2 for generating and transmitting patient conditions detected from ancillary and pulmonary artery pressures.

FIG. 12 is a flow diagram illustrating an example technique for displaying a therapy regimen to a patient and receiving feedback regarding the therapy regimen.

FIG. 13 is a flow diagram illustrating an example technique for displaying a selected therapy regimen to a patient and receiving questionnaire answers from the patient.

FIGS. 14A-14E are conceptual diagrams illustrating example screens presenting various therapy regimens based on detected patient conditions.

FIG. 15 is an example display that illustrates information related to the condition of several patients cared for by a single clinic.

FIG. 16 is an example display that illustrates information related to condition data from one patient.

FIG. 17 is an example display that illustrates information related to detecting a patient condition based on a pressure change detection.

FIG. 18 is an example display that illustrates information related to detecting a patient condition based on a pressure range check.

FIG. 19 is an example display that illustrates feedback from a patient related to a distributed therapy regimen.

FIGS. 20-21 are conceptual diagrams illustrating example screens that may be displayed to receive therapy instructions specifying contingent prescriptions from a clinician.

DETAILED DESCRIPTION

Patients may suffer from medical disorders for which frequent monitoring and treatment modifications may be desirable. The degree or severity of the medical condition may have a propensity to change over time, or the patient may unpredictably exhibit new symptoms. Frequent monitoring and treatment modifications may help to more effectively reduce the severity of the medical condition and/or alleviate symptoms associated with the medical condition, or, in some examples, the frequent monitoring and treatment modifications may help to anticipate and prevent progression of the medical condition.

In one example, congestive heart failure (HF) may be such a medical condition requiring frequency monitoring and/or updates to therapy. Patients afflicted with HF may require daily monitoring to avoid transitioning into acute decompensated heart failure, or decompensation. Decompensation generally refers to exacerbated heart failure and can be characterized by certain signs and symptoms, e.g., shortness of breath and weakness, that may require urgent therapy or hospitalization. In some examples, decompensation may be induced by an intercurrent illness (e.g., pneumonia), myocardial infarction, one or more cardiac arrhythmias, uncontrolled hypertension, or failure of the patient to maintain a fluid restriction, diet, or medication regimen.

Although frequent monitoring by a clinician or other healthcare professional may be desirable, this demanding contact may be prohibitively inconvenient, time-consuming, and expensive for both the patient and the clinician. The systems and techniques described herein facilitate monitoring of one or more medical conditions in a manner that may be less expensive, less time-consuming, and more convenient for both the patient and the clinician compared to systems and techniques that require the patient to be physically present at the clinician\'s office or for the clinician to be physically present with the patient. For example, using the systems and techniques described herein, the clinician may set up therapy instructions that define associations, or relationships, between certain patient conditions and specific therapy regimens. In this manner, the clinician may set up contingent medication prescriptions that are individually prescribed only when called for by a detected patient condition. A sensor at the patient (e.g., implanted in the patient or external to and proximate the patient) senses a physiological parameter of the patient. An external computing device, e.g., a therapy module, may detect a condition of the patient based on an output from the sensor (e.g., the signal indicative of the physiological parameter).

Based on the detected condition, the external computing device automatically selects one of the therapy regimens and distributes or transmits the therapy regimen to the patient. In some examples, the patient may view the therapy regimen displayed on a patient display and take the appropriate action to modify treatment. For example, the patient may read the therapy regimen, and, in response, manually take the contingent medication prescription. In other examples, the system may include a delivery device (e.g., a pill dispenser) that automatically dispenses the prescribed medication to the patient according to the therapy regimen. In some examples, the patient may provide feedback regarding the therapy regimen, e.g., when the therapy was completed, a change in the condition, or any side effects, to the patient interface. This feedback may then be transmitted to the clinician for therapy review.

Although this disclosure generally describes an integrated monitoring system configured to monitor HF, the system may be configured to monitor other patient ailments, diseases or a combination of ailments, diseases and associated symptoms. In any case, the system may detect many patient conditions with one or more sensors and automatically select the appropriate therapy regimen.

FIG. 1 is a schematic illustration of integrated patient care system 10 for monitoring and treating a medical condition of patient 12. System 10 includes patient module 14, clinician module 16, therapy module 18, and network 20. Patient module 14, clinician module 16, and therapy module 18 are configured to communicate with one another via network 20. Although patient module 14, clinician module 16, and therapy module 18 may each be a different device or group of devices, one device may include two or more of the modules. For example, an external computing device with patient 12 may include patient module 14 and therapy module 18 and not require network 20 for communication with each other.

Patient module 14 includes any components necessary for integrating patient 12 into integrated patient care system 10. In the example illustrated in FIG. 1, patient module 14 includes sensor 22, which is configured to sense one or more physiological parameters of patient 12. Using the sensed physiological parameters, sensor 22 may sense one or more conditions of patient 12. Patient module 14 additionally includes patient interface 24 for interaction with patient 12, e.g., for presenting therapy regimens deliverable to patient 12, and/or receiving input from patient 12 (e.g., patient feedback). In addition, in the example illustrated in FIG. 1, patient 12 is schematically illustrated as part of patient module 14 to demonstrate that patient module 14 is associated with patient 12.

In some examples, patient module 14 may also include a processor for performing the techniques attributed to patient module 14 herein. In some examples, a processor may be included within a multi-function device or patient module 14. For example, patient module 14 may include a handheld computing device (e.g., programmer 72 illustrated in FIG. 2), a workstation computer, a personal digital assistant (PDA), a notebook computer, a tablet computer, or another personal computer or other electronic device, any of which may include the processor for performing the techniques attributed to patient module 14. In general, components described as processors of system 10 within this disclosure may each comprise one or more processors, such as one or more microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), programmable logic circuitry, or the like, either alone or in any suitable combination.

In some examples, patient module 14 may also include a memory for storing data. For example, in some examples, the memory may store data related to patient 12, e.g., health information of patient 12 or information identifying patient 12, physiological parameters sensed by sensor 22, detected conditions of patient 12, or any other information related to the medical condition of patient 12. The memory can include any suitable type of memory, such as random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electronically erasable programmable read only memory (EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic media, optical media, or other computer readable media.

Sensor 22 of patient module 14 may be any sensor configured to sense a physiological parameter of patient 12 useful for detecting a condition of patient 12 related to the patient\'s medical condition. In other words, the physiological parameter sensed by sensor 22 may be a specific value or signal generated from sensor 22, and a processor of patient module 14 may use this value or signal to detect conditions of the patient. As one example, sensor 22 may be a pressure sensor that senses a pressure value of patient 12, and a processor may detect a specific patient condition based on the pressure value, e.g., when the pressure value falls within a pressure range corresponding to the specific condition. Example types of sensor 22 may include a pressure sensor, a motion sensor (e.g., an accelerometer, gyroscope or pressure transducer), a temperature sensor (e.g., a thermometer), an acoustic sensor, or an impedance sensor. The type of sensor 22 may be selected based on the type of information required to detect and monitor the condition of patient 12. In one example, as described in further detail below with respect to FIGS. 2 and 3, sensor 22 may be a pressure sensor that is implanted within the right ventricle of the heart of patient 12 to sense pressure within the right ventricle indicative of patient 12 HF. In the examples described herein, sensor 22 is implanted within patient 12. However, in other examples, sensor 22 may be external to patient 12, e.g., an ultrasound sensor, one or more surface electrodes, or an activity sensor (also referred to as a motion sensor).

Patient interface 24 may be any user interface suitable for interaction with patient 12. For example, patient interface 24 may include a display and one or more input mechanisms (e.g., buttons or a touch screen display) that allow another component of system 10 to receive input from patient 12. The display may be a liquid crystal display (LCD), dot matrix display, organic light-emitting diode (OLED) display, touch screen, or any other device capable of delivering and/or accepting information. For visible indications of information, a display screen may suffice. For audible and/or tactile indications of information, patient interface 24 may further include one or more audio speakers, voice synthesizer chips, piezoelectric buzzers, or the like. Further, in some examples, patient interface 24 may include a printer configured to print out a distributed therapy regimen. Patient 12 may take the therapy regimen print-out away from patient module 14 as a reminder of the therapy regimen.

Input buttons for patient interface 24 may include a touch pad, increase and decrease buttons, emergency shut off button, and other buttons that may control a treatment delivered to patient 12. A processor of system 10 may control patient interface 24, retrieve data stored in a memory of system 10, store data within a memory of system 10, and/or transmit data from patient module 14 to another module of system 10.

In some examples, patient module 14 may include a delivery device that dispenses medication to patient 12 according to the therapy regimen received from therapy module 18. For example, the delivery device may be a pill dispenser in communication with the processor of patient module 14. Upon receiving the therapy regimen, the pill dispenser may dispense the appropriate medication type and dose at the specified time according to the therapy regimen. In this manner, a delivery device may be loaded with multiple medications that may eventually be prescribed by the therapy regimen. The delivery device may obviate the need for patient 12 to manually retrieve the appropriate medication from various bottles or select the appropriate dose. This can be useful, for example, if patient 12 has difficulty manually obtaining the correct medication in the correct dosage. In another example, the delivery device may be an intravenous drug delivery device. The therapy regimen may include control the rate at which drug is delivered to patient 12, such upon selecting a therapy regimen, patient module 14 may automatically adjust a rate at which a drug is delivered to patient 12 via the intravenous drug delivery device. The drug delivery device may not be intravenous in other examples.

Clinician module 16 may include any components necessary for integrating clinician 15 into integrated patient care system 10. In the example illustrated in FIG. 1, clinician module 16 includes clinician interface 26, which allows clinician 15 to communicate and exchange information with patient module 14 and therapy module 18 of system 10. Clinician 15 is schematically illustrated as part of clinician module 16 to demonstrate that clinician module 16 is associated with clinician 15. In some examples, clinician module 16 may also include a processor for performing the techniques attributed to clinician module 16 herein. In some examples, the processor may be included within a multi-function device of clinician module 16. For example, clinician module 16 may include a handheld computing device, a larger workstation computer, a PDA, a notebook computer, a tablet computer, or another multipurpose personal computer or dedicated computing device, any of which may include the processor for performing the techniques of clinician module 16. Although clinician interface 26 may be a user interface on a single device, clinician interface 26 may be accessible on a variety of devices as needed by clinician 15. For example, clinician 15 may be able to access clinician interface 26 via a clinician programmer, clinic workstation, tablet computer, webpage, or a consumer electronic device (e.g., a cellular telephone). In this manner, clinician module 16 may be provided by a clinic server or other remote computing device and clinician 15 may update therapy instructions and receive patient 12 information at any location.

In some examples, clinician module 16 may also include a memory for storing data. For example, in some examples, the memory may store information related to patient 12, e.g., health information, sensed physiological parameters, historical condition data, prescription information, or other information related to clinician 15 such as identification information. In some examples, the memory may also store other data that may be useful in managing the medical condition of patient 12. The memory can include any suitable type of memory, such as RAM, ROM, PROM, EPROM, EEPROM, flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic media, optical media, or other computer readable media.

Clinician interface 26 can be any user interface suitable for interaction with clinician 15. For example, clinician interface 26 may include a display and one or more input buttons that allow another component of system 10 to receive input from clinician 15. Alternatively or additionally, clinician interface 26 may utilize a touch screen display. The screen may be a LCD, dot matrix display, OLED display, touch screen, or any other device capable of delivering and/or accepting information. For visible indications of information, a display screen may suffice. For audible and/or tactile indications of information, clinician interface 26 may further include one or more audio speakers, voice synthesizer chips, piezoelectric buzzers, or the like.

Input buttons for clinician interface 26 may include a touch pad, increase and decrease buttons, emergency shut off button, and other buttons that may control or modify a therapy delivered to patient 12, as well as other buttons for inputting information into clinician module 16. A processor of system 10 may control clinician interface 26, retrieve data stored in a memory of system 10, store data within a memory of system 10, and/or transmit data from clinician module 16 to another module of system 10.

Therapy module 18 may include any components and configuration suitable for storing the therapy instructions that associates patient conditions with the one or more therapy regimens used to treat patient 12, and providing remote access to the stored therapy instructions. For example, in some examples, therapy module 18 includes a memory (i.e., one or more memories) for storing the preset patient conditions detectable based on a physiological parameter sensed by sensor 22. These patient conditions may be ranges for specific physiological parameters sensed by sensor 22 or some other function of sensor 22 output. The memory may also store a plurality of therapy regimens of the therapy instructions. Each therapy regimen may be a specific set of medications, doses, and delivery times.

In some examples, the plurality of stored therapy regimens may not merely include predetermined prescriptions that are each associated with a condition. Instead of or in addition to a predefined prescription that is associated with a respective condition, the plurality of stored therapy regimens may be defined by an equation or algorithm that indicates a prescription that is a function of the detected condition. For example, the dosage, intake times, and/or medications of each prescription may be generated based on the detected condition, e.g., the contingent prescriptions may be one prescription that varies based on the condition, and the stored equation or algorithm. In this fashion, clinician 15 may not need to create a large table of condition-therapy regimens associated with each condition.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Integrated patient care patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Integrated patient care or other areas of interest.
###


Previous Patent Application:
Cuffless blood pressure monitor
Next Patent Application:
Implantable medical sensor and fixation system
Industry Class:
Surgery
Thank you for viewing the Integrated patient care patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.80716 seconds


Other interesting Freshpatents.com categories:
Software:  Finance AI Databases Development Document Navigation Error

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2254
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120108984 A1
Publish Date
05/03/2012
Document #
12915992
File Date
10/29/2010
USPTO Class
600485
Other USPTO Classes
705/2
International Class
/
Drawings
22



Follow us on Twitter
twitter icon@FreshPatents