FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Drive system for electrically operated vehicle

last patentdownload pdfdownload imgimage previewnext patent


Title: Drive system for electrically operated vehicle.
Abstract: A drive system is provided for a utility vehicle and includes an alternating-current (AC) motor for providing a drive torque. An AC motor controller receives a battery voltage signal, throttle pedal position signal, brake pedal position signal, key switch signal, forward/neutral/reverse (FNR) signal, and run/tow signal indicative of the utility vehicle being configured to be driven and being configured to be towed. The AC motor controller generates an AC drive signal for the AC motor, wherein the AC drive signal is based on the battery voltage signal, throttle pedal position signal, brake pedal position signal, key switch signal, FNR signal, and run/tow signal. ...


Browse recent Textron Inc. patents - Providence, RI, US
Inventors: Warren Clark, Oliver A. Bell
USPTO Applicaton #: #20120116628 - Class: 701 22 (USPTO) - 05/10/12 - Class 701 
Data Processing: Vehicles, Navigation, And Relative Location > Vehicle Control, Guidance, Operation, Or Indication >Electric Vehicle

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120116628, Drive system for electrically operated vehicle.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/896,967 filed Oct. 4, 2010 as a continuation of U.S. patent application Ser. No. 12/487,695 filed on Jun. 19, 2009 as a continuation of U.S. patent application Ser. No. 11/966,289 filed on Dec. 28, 2007 as a continuation of U.S. patent application Ser. No. 11/260,867 filed on Oct. 27, 2005. This application claims the benefit of U.S. Provisional Application No. 60/623,149, filed on Oct. 28, 2004. The specifications of the above application are incorporated herein by reference in their entirety.

FIELD

The present disclosure relates generally to a brushless, alternating current (AC) drive system for providing motive power to drive wheels of an electrically operated vehicle.

BACKGROUND

The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

All electric motors, such as alternating current (AC) motors or direct current (DC) function on a principle that two magnetic fields in proximity to one another have a tendency to align. One way to induce a magnetic field is to pass current through a coil of wire. If two coils with current passing through them are in proximity to each other, the respective magnetic fields that are generated have a tendency to align themselves. If the two coils are between 0 and 180 degrees out of alignment, this tendency may create a torque between the two coils. An arrangement where one of these coils is mechanically fixed to a shaft and the other is fixed to an outer housing is known as an electric motor. The torque produced between these coils may vary with the current through the coils.

AC motors may encompass a wide class of motors, including single/multiphase, universal, servo, induction, synchronous, and gear motor types, for example. The magnetic field generated by AC motors may be produced by an electromagnet powered by the same AC voltage as the motor coil. The coils that produce the magnetic field are traditionally called the “field coils” while the coils and the solid core that rotates is called the armature coils.

AC motors may have some advantages over DC motors. Some types of DC motors include a device known as a commutator. The commutator ensures that there is always an angle between the two coils, so as to continue to produce torque as the motor shaft rotates through in excess of 180 degrees. The commutator disconnects the current from the armature coil, and reconnects it to a second armature coil before the angle between the armature coil and field coil connected to a motor housing reaches zero.

The ends of each of the armature coils may have contact surfaces known as commutator bars. Contacts made of carbon, called brushes, are fixed to the motor housing. A DC motor with a commutator and brushes may be known as a ‘brushed’ DC motor, for example. As the DC motor shaft rotates, the brushes lose contact with one set of bars and make contact with the next set of bars. This process maintains a relatively constant angle between the armature coil and the field coil, which in turn maintains a constant torque throughout the DC motor\'s rotation.

Some types of AC motors, known as brushless AC motors, do not use brushes or commutator bars. Brushed DC motors typically are subject to periodic maintenance to inspect and replace worn brushes and to remove carbon dust, which represents a potential sparking hazard, from various motor surfaces. Accordingly, use of a brushless AC motor instead of the brushed DC motor may eliminate problems related to maintenance and wear, and may also eliminate the problem of dangerous sparking. AC motors may also be well suited for constant-speed applications. This is because, unlike a DC motor, motor speed in an AC motor is determined by the frequency of the AC voltage applied to the motor terminals.

There are two distinct types of AC motors, AC synchronous motors and AC induction motors. A synchronous motor consists of a series of windings in the stator section with a simple rotating area. A current is passed through the coil, generating torque on the coil. Since the current is alternating, the motor typically runs smoothly in accordance with the frequency of the sine wave. This allows for constant, unvarying speed from no load to full load with no slip.

AC induction motors are generally the more common of the two AC motor types. AC induction motors use electric current to induce rotation in the coils, rather than supplying the rotation directly. Additionally, AC induction motors use shorted wire loops on a rotating armature and obtain the motor torque from currents induced in these loops by the changing magnetic fields produced in the field coils.

Conventional electric motor driven vehicles such as golf cars and small utility vehicles are DC powered, and primarily powered by a shunt-type DC drive system. The shunt-type DC motor has replaced many of the older series wound DC motors for powering vehicles such as golf cars. A shunt-type DC motor has armature and field windings connected in parallel to a common voltage source, a configuration which offers greater flexibility in controlling motor performance than series wound DC motors. However, these shunt type motors still present maintenance and potential spark hazard problems. It is not heretofore believed that a brushless AC drive system has been developed which provides the motive force for driving wheels of a vehicle such as a golf car.

Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. Throughout the disclosure, like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limitative of the various embodiments.

FIG. 1 is a block diagram an AC drive system in accordance with various embodiments.

FIG. 2 is a block diagram of an instrument panel in accordance with an various embodiments.

FIG. 3 is a block diagram illustrating an arrangement of CAN communication chips in accordance with various embodiments.

FIG. 4 is a block diagram illustrating a front wheel speed sensor in accordance with various embodiments.

FIG. 5 is a block diagram illustrating a multiple or all wheel drive arrangement in accordance with various embodiments.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Drive system for electrically operated vehicle patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Drive system for electrically operated vehicle or other areas of interest.
###


Previous Patent Application:
Traction control system and method
Next Patent Application:
Engine load management for traction vehicles
Industry Class:
Data processing: vehicles, navigation, and relative location
Thank you for viewing the Drive system for electrically operated vehicle patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.65067 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2432
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120116628 A1
Publish Date
05/10/2012
Document #
13348693
File Date
01/12/2012
USPTO Class
701 22
Other USPTO Classes
318376
International Class
/
Drawings
6



Follow us on Twitter
twitter icon@FreshPatents