Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Solid-state imaging apparatus and electronic device / Sony Corporation




Solid-state imaging apparatus and electronic device


Disclosed herein is a solid-state imaging apparatus including: a semiconductor base; a photodiode created on the semiconductor base and used for carrying out photoelectric conversion; a pixel section provided with pixels each having the photodiode; a first wire created by being electrically connected to the semiconductor base for the pixel section through a contact section and being extended in a first direction to the outside of the pixel section; a second wire made...



Browse recent Sony Corporation patents


USPTO Applicaton #: #20170062502
Inventors: Mikiko Kobayashi, Kazuyoshi Yamashita


The Patent Description & Claims data below is from USPTO Patent Application 20170062502, Solid-state imaging apparatus and electronic device.


CROSS-REFERENCE TO RELATED APPLICATIONS

- Top of Page


This application is a continuation of U.S. patent application Ser. No. 15/193,876, filed Jun. 27, 2016, which is a continuation of U.S. patent application Ser. No. 15/050,165, filed Feb. 22, 2016, now U.S. Pat. No. 9,419,042, which is a continuation of U.S. patent application Ser. No. 14/830,405, filed Aug. 19, 2015, now U.S. Pat. No. 9,356,057, which is a continuation of U.S. patent application Ser. No. 13/852,575, filed Mar. 28, 2013, now U.S. Pat. No. 9,184,208, which claims priority to Japanese Patent Application No. JP 2012-085666, filed in the Japan Patent Office on Apr. 4, 2012, the entire disclosures of which are hereby incorporated herein by reference.

BACKGROUND

- Top of Page


The present technology relates to a solid-state imaging apparatus and an electronic device employing the apparatus.

In a CMOS (complementary metal-oxide semiconductor) solid-state imaging apparatus, a wire for supplying a voltage to pixels is created in a first wiring layer extended in a vertical or horizontal direction. For more information, refer to documents such as Japanese Patent Laid-open No. 2004-104203.

FIG. 13 is a diagram roughly showing a typical top view of a CMOS solid-state imaging apparatus having a configuration of related art.

As shown in FIG. 13, each pixel includes a photodiode (PD) 51, a floating diffusion (FD) 52 and a transistor (TR) section 53. A number of such pixels are laid out in the vertical and horizontal directions to form a configuration. The transistor section 53 includes an amplify transistor, a select transistor and a reset transistor.

Between the photodiode 51 and the floating diffusion 52, a read gate 54 is provided. A wire 61 is created on the read gate 54.

The floating diffusion 52 and the transistor section 53 are connected to each other by a wire 63 provided on the left side of the photodiode 51. On the left side of the wire 63, a ground wire 64 extended in the vertical direction is provided. The ground wire 64 is connected to a semiconductor base by a contact section 65.

The ground wire 64 receives a ground electric potential also referred to as an earth electric potential from an external source so that the electric potential appearing on the semiconductor base is fixed at the earth electric potential.

The wires 61 and 63 as well as the ground wire 64 are each created as a first wiring layer which is a metallic-wiring layer. The first wiring layer is connected to a second wiring layer, which is also a metallic-wiring layer, through a contact section. However, the connection of the first wiring layer to the second wiring layer is not shown in the figure.

SUMMARY

- Top of Page


In the configuration shown in FIG. 13, the ground wire 64 is stretched in the vertical direction. In a configuration including a ground wire stretched in the horizontal direction and a configuration including a ground wire stretched in the vertical direction as is the case with the configuration shown in the figure, when a portion of the ground wire is inadvertently broken, the configuration will undesirably include a pixel row and/or a pixel column in which the electric potentials of the semiconductor bases are not fixed at the earth electric potential.

Thus, a vertical or horizontal line may be generated on an image in some cases. In addition, a shading or the like may be generated on the screen in some cases due to a weakened state in which the semiconductor base is fixed at the earth electric potential. When these phenomena occur, the phenomena become causes of a deteriorating image quality and a reduced yield.

It is thus desired to provide a solid-state imaging apparatus having a configuration capable of improving the image quality and increasing the yield. It is also desired to provide an electronic device employing the solid-state imaging apparatus.

A solid-state imaging apparatus according to an embodiment of the present technology includes: a semiconductor base; a photodiode created on the semiconductor base and used for carrying out photoelectric conversion; and a pixel section provided with pixels each having the photodiode.

In addition, the solid-state imaging apparatus also includes a first wire created by being electrically connected to the semiconductor base for the pixel section through a contact section and being extended in a first direction to the outside of the pixel section.

On top of that, the solid-state imaging apparatus also includes a second wire made from a wiring layer different from the first wire and created by being extended in a second direction different from the first direction to the outside of the pixel section.

The solid-state imaging apparatus further includes a contact section for electrically connecting the first and second wires to each other.

An electronic device according to another embodiment of the present technology includes an optical system, the solid-state imaging apparatus described above and a signal processing circuit for processing signals output by the solid-state imaging apparatus.

As described above, the configuration of the solid-state imaging apparatus according to the embodiment of the present technology includes: a first wire created by being extended in a first direction to the outside of the pixel section and being electrically connected to a semiconductor base by a contact section; and a second wire created by being extended in a second direction different from the first direction to the outside of the pixel section and being electrically connected to the first wire by the contact section.

Thus, even if either the first wire or the second wire is broken, it is possible to provide an electric potential to the semiconductor base through the other one of the first wire and the second wire.

In addition, since the first and second wires are electrically connected to each other, the resistance of these wires for supplying an electric potential to the semiconductor base is reduced.

As described above, the configuration of the electronic device according to the embodiment of the present technology includes the solid-state imaging apparatus according to the embodiment of the present technology. Thus, even if either the first or second wire of the solid-state imaging apparatus is broken, it is possible to provide an electric potential to the semiconductor base through the other one of the first wire and the second wire. In addition, since the first and second wires are electrically connected to each other, the resistance of these wires for supplying an electric potential to the semiconductor base can be reduced.

As described above, in accordance with the embodiments of the present technology, there is provided a configuration including: a first wire created by being extended in a first direction to the outside of the pixel section and being electrically connected to a semiconductor base by a contact section; and a second wire made from a wiring layer different from the first wire and created by being extended in a second direction different from the first direction to the outside of the pixel section and being electrically connected to the first wire by the contact section.

Thus, even if either the first wire or the second wire is broken, it is possible to provide an electric potential to the semiconductor base through the other one of the first wire and the second wire.

As a result, the electric potential of the semiconductor base can be sustained at a fixed level so that it is possible to improve the image quality and increase the yield.

In addition, in accordance with the embodiments of the present technology, the resistance of these wires for supplying an electric potential to the semiconductor base can be reduced. It is thus possible to strengthen the electric potential of the semiconductor base. Therefore, it is possible to eliminate characteristic variations from pixel to pixel on the screen and get rid of shadings of the screen so as to improve the image quality and increase the yield.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


FIG. 1 is a diagram showing a rough configuration of a solid-state imaging apparatus according to a first embodiment or a diagram showing a circuit configuration of main components employed in the solid-state imaging apparatus;

FIGS. 2A and 2B are diagrams showing top views of layouts of respectively first and second ground wires shown in FIG. 1;

FIG. 3 is a diagram showing a perspective (overhead) view of portions connecting the first and second ground wires to each other;

FIG. 4 is a diagram showing a cross section of the vicinity of a floating diffusion in the solid-state imaging apparatus according to the first embodiment;




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Solid-state imaging apparatus and electronic device patent application.

###


Browse recent Sony Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Solid-state imaging apparatus and electronic device or other areas of interest.
###


Previous Patent Application:
Solid state lighting device with virtual filament(s)
Next Patent Application:
Solid-state imaging device and electronic apparatus
Industry Class:

Thank you for viewing the Solid-state imaging apparatus and electronic device patent info.
- - -

Results in 0.04778 seconds


Other interesting Freshpatents.com categories:
Nokia , SAP , Intel , NIKE ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2459

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20170062502 A1
Publish Date
03/02/2017
Document #
15348564
File Date
11/10/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
12


Diode Electric Conversion Electronic Device Imaging Photodiode Photoelectric Conversion Semiconductor

Follow us on Twitter
twitter icon@FreshPatents

Sony Corporation


Browse recent Sony Corporation patents





Browse patents:
Next
Prev
20170302|20170062502|solid-state imaging apparatus and electronic device|Disclosed herein is a solid-state imaging apparatus including: a semiconductor base; a photodiode created on the semiconductor base and used for carrying out photoelectric conversion; a pixel section provided with pixels each having the photodiode; a first wire created by being electrically connected to the semiconductor base for the pixel |Sony-Corporation
';