Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Insulated fluid conduit / General Electric Company




Insulated fluid conduit


The present invention provides an insulated fluid conduit useful in facilities in which a hot fluid susceptible to one or more deleterious phase changes in response to heat loss to a cold environment is transported. Such conduits may be particularly well suited to improve thermal control in subsea hydrocarbon production operations. The fluid conduit includes an inner first insulating layer containing a first polymer matrix, and a first phase change material undergoing...



Browse recent General Electric Company patents


USPTO Applicaton #: #20170059080
Inventors: Huabing Zheng, Donald Joseph Buckley, Jr., Scott Michael Miller, Chad Eric Yates, Juan Alberto Rivas Cardona


The Patent Description & Claims data below is from USPTO Patent Application 20170059080, Insulated fluid conduit.


CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part and claims priority to U.S. patent application Ser. No. 14/840,678 filed Aug. 31, 2015 for “INSULATED FLUID CONDUIT”, which is hereby incorporated by reference in its entirety.

BACKGROUND

- Top of Page


The present invention relates to equipment useful in fluid production operations taking place in cold environments. In particular, the invention relates to insulated fluid conduits, their manufacture, and systems containing them.

Many beneficial human manufacturing and energy production activities involve the transport of a heated fluid in a fluid conduit situated in a cold environment. Where the fluid is susceptible to solidification or becoming unmanageably viscous because of heat loss to the cold environment, prudent engineering practices include insulating pipes against passive heat loss to the environment and/or actively heating the fluid conduit along its length.

Heat loss and its attendant consequences may become particularly severe where flow of the heated fluid through the conduit is interrupted. The conduit containing the heated liquid gradually cools via heat loss to the environment and the fluid may solidify or become unmanageably viscous within the conduit. When flow is resumed, the thermally depleted matter within the fluid conduit may prevent or delay the resumption of fluid flow within the fluid conduit. Problems can be particularly severe when the heated fluid readily crystallizes on cooling, as is the case with relatively pure phenol (melting point 43° C., CAS No. 108-95-2) or otherwise forms solids on cooling. (See natural gas hydrates for example.)

Thus, heat retention within fluid conduits may be critical to the efficient operation of facilities in which a hot fluid susceptible to one or more deleterious phase changes in response to heat loss to a cold environment is transported. There is at present a particular need for improved thermal control in subsea hydrocarbon production operations in which hot production fluids may undergo one or more deleterious phase changes as a result of heat loss to the cold subsea environment. The present invention provides one or more embodiments enabling improved thermal control in such environments.

BRIEF DESCRIPTION

In one embodiment, the present invention provides an insulated fluid conduit comprising: (a) a conduit inner surface defining a flow channel; (b) a conduit outer surface; (c) a first insulating layer comprising a first phase change material dispersed in a first polymer matrix; (d) a second insulating layer disposed upon the first insulating layer, the second insulating layer comprising a second phase change material dispersed in a second polymer matrix; and (e) at least one barrier layer configured to inhibit migration of one or more of the first and second phase change materials into the environment; wherein the first phase change material has a melting point T1 and the second phase change material has a melting point T2, and T1 is greater than T2.

In an alternate embodiment, the present invention provides an insulated fluid conduit comprising: (a) a conduit inner surface defining a flow channel; (b) a conduit outer surface; (c) a first insulating layer comprising a silicone rubber and a first phase change material; (d) a second insulating layer comprising a silicone rubber and a second phase change material; and (e) at least one barrier layer configured to inhibit migration of one or more of the first and second phase change materials into the environment; wherein the first phase change material has a melting point T1 and the second phase change material has a melting point T2, and T1 is greater than T2.

In yet another embodiment, the present invention provides an insulated fluid conduit comprising: (a) a conduit inner surface defining a flow channel; (b) a conduit outer surface; (c) a first insulating layer comprising a first phase change material dispersed in a first polymeric matrix; (d) a second insulating layer comprising a second phase change material dispersed in a second polymeric matrix; and (e) at least one barrier layer configured to inhibit migration of one or more of the first and second phase change materials into the environment; wherein the first phase change material has a melting point T1 and the second phase change material has a melting point T2, and T1 is greater than T2, and wherein at least one of the first polymeric matrix and the second polymeric matrix is configured as an open cell foam defining a network of voids.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

Various features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters may represent like parts throughout the drawings. Unless otherwise indicated, the drawings provided herein are meant to illustrate key inventive features of the invention. These key inventive features are believed to be applicable in a wide variety of systems which comprising one or more embodiments of the invention. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the invention.

FIG. 1 illustrates a substructure within one or more embodiments of the present invention.

FIG. 2 illustrates a substructure within one or more embodiments of the present invention.

FIG. 3 illustrates one or more embodiments of the present invention.

FIG. 4 illustrates one or more embodiments of the present invention.

FIG. 5 illustrates the performance characteristics of a model insulation system relative to a control.

FIG. 6 illustrates the performance characteristics of a model insulation system relative to a control.

FIG. 7 illustrates the performance characteristics of a model insulation system relative to a control.

FIG. 8 illustrates the performance characteristics of a model insulation system relative to a control.

DETAILED DESCRIPTION

- Top of Page


In the following specification and the claims, which follow, reference will be made to a number of terms, which shall be defined to have the following meanings.

The singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.

“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.

Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.

As noted, in one embodiment, the present invention provides an insulated fluid conduit comprising (a) a conduit inner surface defining a flow channel; (b) a conduit outer surface; (c) a first insulating layer comprising a first polymer matrix and a first phase change material; (d) a second insulating layer comprising a second polymer matrix and a second phase change material; and (e) at least one barrier layer configured to inhibit migration of one or more of the first and second phase change materials into the environment; wherein the first phase change material has a melting point T1 and the second phase change material has a melting point T2, and T1 is greater than T2. The fluid conduit may be of any type which may be used to transport or control the flow of a fluid, such as a production fluid from a hydrocarbon reservoir. Such conduits include pipes, valves, manifolds, joints, Christmas trees, risers and tie-backs such as may be useful in subsurface aquatic environments adjacent to a subsea hydrocarbon reservoir. Such conduits find use as well in surface environments where the ambient temperature may be exceedingly cold.

The insulated fluid conduit comprises a first insulating layer comprising a first phase change material dispersed in a first polymer matrix and a second insulating layer comprising a second phase change material dispersed within a second polymer matrix. The first insulating layer may be disposed directly on the outer surface of the fluid conduit, on an adhesive tie layer in direct contact with the fluid conduit outer surface, on a thermally conductive layer designed to promote heat exchange between the flow channel of the fluid conduit and the first insulating layer, or on a combination of two or more of such intervening layers. The insulated fluid conduit is, however, configured such that as hot fluid passes through the flow channel of the fluid conduit sufficient heat is transferred to the first and second insulating layers to cause the first phase change material and the second phase change material to undergo at least one substantially reversible phase change. Typically, the phase changes taking place as heat from a hot fluid passing through the fluid conduit is absorbed by the first insulating layer and the second insulating layer are the melting of the first phase change material at a temperature T1 and the melting of the second phase change material at a temperature T2. More generally, however, the phase changes which the first and second phase change materials undergo can be any substantially reversible phase change which absorbs heat in a forward direction and releases heat in a reverse direction. Suitable phase changes include phase changes occurring as when, for example, a crystalline solid undergoes a reversible first heat absorbing phase change to a liquid crystalline phase, and a reversible second heat absorbing phase change to true liquid phase, and thereafter releases heat as the true liquid phase cools and returns to the liquid crystalline phase, and releases additional heat as the liquid crystalline phase further cools and returns to the original crystalline solid phase. In one or more embodiments, the phase change materials are relatively simple organic materials such as waxes, which are crystalline solids when cold and undergo a reversible phase change to a molten state when heated and remain in the molten state through the onset of a cool down period. As the molten first phase change material and second phase change material cool and undergo crystallization, heat is released thereby lengthening the duration of the cool down period. It has been found experimentally that the length of such cool down period may be maximized when the temperature T1 at which the first phase change material undergoes its greatest heat absorbing/releasing reversible phase change is greater than the temperature T2 at which the second phase change material undergoes its greatest heat absorbing/releasing reversible phase change.

The first polymer matrix and the second polymer matrix may comprise any polymeric material in which the first phase change material and second phase change material may be dispersed. In one or more embodiments, the first polymer matrix and the second polymer matrix are essentially identical. In an alternate set of embodiments, the first polymer matrix and the second polymer matrix are essentially non-identical and differ with respect to one or more of polymer class, polymer structure and polymer molecular weight. In one or more embodiments, at least one of the first polymer matrix and the second polymer matrix is configured as an open cell foam. In one or more alternate embodiments, at least one of the first polymer matrix and the second polymer matrix is substantially non-porous, meaning that any voids present in the polymer matrix represent less than five percent of the total volume of the polymer matrix.

In one or more alternate embodiments, at least one of one of the first polymer matrix and the second polymer matrix comprises a polyolefin. Suitable polyolefins include polyethylene, polypropylene and polyolefin block copolymers such as polystyrene-polybutylene block copolymers. In one or more embodiments, at least one of the first polymer matrix and the second polymer matrix is a porous polyolefin such as an open cell polyethylene foam, an open cell polypropylene foam, or an open cell polyolefin block copolymeric foam.




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Insulated fluid conduit patent application.

###


Browse recent General Electric Company patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Insulated fluid conduit or other areas of interest.
###


Previous Patent Application:
Insulated fluid conduit
Next Patent Application:
Insulated modular roof system
Industry Class:

Thank you for viewing the Insulated fluid conduit patent info.
- - -

Results in 0.04749 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1901

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20170059080 A1
Publish Date
03/02/2017
Document #
15224782
File Date
08/01/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
8


Delete Hydrocarbon Matrix Microencapsulated Phase Change Material Polymer

Follow us on Twitter
twitter icon@FreshPatents

General Electric Company


Browse recent General Electric Company patents





Browse patents:
Next
Prev
20170302|20170059080|insulated fluid conduit|The present invention provides an insulated fluid conduit useful in facilities in which a hot fluid susceptible to one or more deleterious phase changes in response to heat loss to a cold environment is transported. Such conduits may be particularly well suited to improve thermal control in subsea hydrocarbon production |General-Electric-Company
';