Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Managing technology resources across multiple platforms / Microsoft Technology Licensing, Llc




Managing technology resources across multiple platforms


The present invention extends to methods, systems, and computer program products for managing technology resources across multiple platforms. Embodiments of the invention can be used to manage the configuration of a plurality of different devices. A management server/service can utilize native management capabilities of different devices to provide configuration management without requiring agents to be installed on the devices. In general, the management server/service...



Browse recent Microsoft Technology Licensing, Llc patents


USPTO Applicaton #: #20170054599
Inventors: Steven P. Burns, Todd J. Abel, Vadim Meleshuk, Weiqing Tu, Dov Sheinker, Amit Flashner


The Patent Description & Claims data below is from USPTO Patent Application 20170054599, Managing technology resources across multiple platforms.


CROSS-REFERENCE TO RELATED APPLICATIONS

- Top of Page


This application is a continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 14/866,832 entitled “Managing Technology Resources Across Multiple Platforms”, filed Sep. 25, 2015 by Steven P. Burns et al., the entire contents of which are expressly incorporated by reference. That application is a continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 13/721,042, now U.S. Pat. No. 9,172,773, entitled “Managing Technology Resources Across Multiple Platforms”, filed Dec. 20, 2012 by Steven P. Burns et al., the entire contents of which are expressly incorporated by reference.

BACKGROUND

- Top of Page


Background and Relevant Art

Computer systems and related technology affect many aspects of society. Indeed, the computer system's ability to process information has transformed the way we live and work. Computer systems now commonly perform a host of tasks (e.g., word processing, scheduling, accounting, etc.) that prior to the advent of the computer system were performed manually. More recently, computer systems have been coupled to one another and to other electronic devices to form both wired and wireless computer networks over which the computer systems and other electronic devices can transfer electronic data. Accordingly, the performance of many computing tasks is distributed across a number of different computer systems and/or a number of different computing environments.

In enterprise network environments, an information technology (IT) management group typically manages the configuration of computing devices for an entity (e.g., a corporation). Larger networks can include 100s or even 1000's computing devices, including personal computers, phones, tablets, etc. Different computing devices can have different and unique technologies and implementation details, such as, different hardware and software. As a result, the required configuration management for the different computing devices can also vary.

Some computing devices may be more easily managed than other computing devices. For example, a widely adopted design for personal computer configuration management system is a client-server design. That is, a server (or service) is contacted by an accompanying client, which is typically a software process (an ‘agent’) running on the computer being managed. The client periodically contacts the server to receive configuration directives and to submit data regarding the management of the computer running the agent. The server and the client to be developed in tandem to increase interoperability.

On the other hand, when managing a mobile device (e.g., a slate/tablet/phone or similar), the client-server design often does not work. For example, on many mobile devices the device operating platform does not allow for an agent to be installed on the device. Alternatively, a device manufacturer, distributor, supplier, carrier, or licensing entity may not allow under the terms of the use of the device, the installation of an agent on the device (even if the operating platform does allow installation of an agent). For either of these configurations, it is typically for a device platform to already include some form of remote device management. That is, the device may already have some sort of management agent supplied by the device manufacturer. Additionally, the development of an agent for the device platform may be redundant with functionality already present on the device. Thus, even if the device lends itself to the installation of a management agent, it may not be attractive to develop one since doing so would provide little value over functionality already present.

Further, some configuration management directives are not realized on a device at all. Rather, such directives are to manage the configuration of other software systems on behalf of a user or device that utilizes those systems. For example, an IT admin may desire to manage a user's email in-box. However, the in-box is an artifact of the email system—separate from an IT configuration management system. That is, devices access the email system to retrieve the email for a given user. These devices, in the context of email retrieval, respond to the configuration of the email system. Nonetheless, the IT admin would like to specify management directives for the device's behavior that is governed by the email system. However, the email system is merely an intermediary for the indirect management of services.

Moreover, it is often the case that enterprises have existing and several systems in place that are installed “on premises,” meaning, that the enterprise owns and operates the equipment on which those systems run. Likewise, it is increasingly the case that enterprises utilize services provided over communications networks such as the Internet. These Internet services owned and operated by a third party. However, it can be difficult to manage these external systems using a client-server design.

It can also be difficult to manage a computing device when the client or server component in a client-server design changes. For example, it may be that a managed device has a native device client agent designed to work with a given IT management system. If the IT management system changes (e.g., due to an upgrade), the device client agent may become incompatible and require changes. In some environments, it may not even be possible to change the device client agent. For example, the device client agent may be embedded in hardware (e.g., an embedded system) and cannot be revised.

BRIEF

SUMMARY

- Top of Page


The present invention extends to methods, systems, and computer program products for managing technology resources across multiple platforms. In some embodiments, a directive dispatcher issues an abstract-device neutral directive to a specified (and possible one of many different) device(s). The abstract device-neutral directive directs the specified target device to implement a configuration change. A platform-specific gateway (possibly one of a plurality of different platform-specific gateways) for the specified target device receives the abstract device-neutral directive from a distribution component. The platform-specific gateway translates the abstract device-neutral directive into a form suitable for execution at the specified target device to implement the configuration change. The platform-specific gateway sends the form suitable for execution at the specified target device to the specified target device so as to realize the configuration change at the specified target device.

In other embodiments, a platform-specific gateway collects operational data from a specified target device. The operational data is in a device-specific data format and relates to a previously issued directive from a directive dispatcher. The platform-specific gateway translates the operational data from the device-specific data format into the device-neutral data format in accordance with a device-neutral data schema. The platform-specific gateway submits the operational data in the device-neutral data format to a data collection service for storage in a data persistence store. The operational data is available for subsequent use by business logic when processing issued directives from the directive dispatcher.

This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 illustrates an example computer architecture that facilitates translating a device-neutral directive.

FIG. 2 illustrates a flow chart of an example method for translating a device-neutral directive.

FIG. 3 illustrates an example computer architecture that facilitates translating a device-specific operational data.

FIG. 4 illustrates a flow chart of an example method for translating device-specific operational data.

FIG. 5 illustrates an example computer architecture that facilitates managing technology resources across multiple platforms.

DETAILED DESCRIPTION

- Top of Page


The present invention extends to methods, systems, and computer program products for managing technology resources across multiple platforms. In some embodiments, a directive dispatcher issues an abstract-device neutral directive to a specified (and possible one of many different) device(s). The abstract device-neutral directive directs the specified target device to implement a configuration change. A platform-specific gateway (possibly one of a plurality of different platform-specific gateways) for the specified target device receives the abstract device-neutral directive from a distribution component. The platform-specific gateway translates the abstract device-neutral directive into a form suitable for execution at the specified target device to implement the configuration change. The platform-specific gateway sends the form suitable for execution at the specified target device to the specified target device so as to realize the configuration change at the specified target device.

In other embodiments, a platform-specific gateway collects operational data from a specified target device. The operational data is in a device-specific data format and relates to a previously issued directive from a directive dispatcher. The platform-specific gateway translates the operational data from the device-specific data format into the device-neutral data format in accordance with a device-neutral data schema. The platform-specific gateway submits the operational data in the device-neutral data format to a data collection service for storage in a data persistence store. The operational data is available for subsequent use by business logic when processing issued directives from the directive dispatcher.

Embodiments of the present invention may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors and system memory, as discussed in greater detail below. Embodiments within the scope of the present invention also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, embodiments of the invention can comprise at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.

Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.

A “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a transmission medium. Transmissions media can include a network and/or data links which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.

Further, upon reaching various computer system components, program code means in the form of computer-executable instructions or data structures can be transferred automatically from transmission media to computer storage media (devices) (or vice versa). For example, computer-executable instructions or data structures received over a network or data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less volatile computer storage media (devices) at a computer system. Thus, it should be understood that computer storage media (devices) can be included in computer system components that also (or even primarily) utilize transmission media.




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Managing technology resources across multiple platforms patent application.

###


Browse recent Microsoft Technology Licensing, Llc patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Managing technology resources across multiple platforms or other areas of interest.
###


Previous Patent Application:
Managing printhead nozzle conditions
Next Patent Application:
Managing telephonic communications
Industry Class:

Thank you for viewing the Managing technology resources across multiple platforms patent info.
- - -

Results in 0.04484 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Apple ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1939

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20170054599 A1
Publish Date
02/23/2017
Document #
15344385
File Date
11/04/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
6


Computer Program Configuration Management Server

Follow us on Twitter
twitter icon@FreshPatents

Microsoft Technology Licensing, Llc


Browse recent Microsoft Technology Licensing, Llc patents





Browse patents:
Next
Prev
20170223|20170054599|managing technology resources across multiple platforms|The present invention extends to methods, systems, and computer program products for managing technology resources across multiple platforms. Embodiments of the invention can be used to manage the configuration of a plurality of different devices. A management server/service can utilize native management capabilities of different devices to provide configuration management |Microsoft-Technology-Licensing-Llc
';