Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors / Dimerond Technologies, Llc




Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors


An apparatus comprising a plurality of solar cells that each comprise a nanowire titanium oxide core having graphene disposed thereon. By one approach this plurality of solar cells can comprise, at least in part, a titanium foil having the plurality of solar cells disposed thereon wherein at least a majority of the solar cells are aligned substantially parallel to one another and substantially perpendicular to the titanium foil. Such a plurality of solar cells can be...



Browse recent Dimerond Technologies, Llc patents


USPTO Applicaton #: #20170054044
Inventors: Dieter M. Gruen


The Patent Description & Claims data below is from USPTO Patent Application 20170054044, Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors.


RELATED APPLICATION(S)

This is a continuation of U.S. patent application Ser. No. 14/420,860, Feb. 10, 2015, entitled Solar Cells Having Nanowire Titanium Oxide And/Or Silicon Carbide Cores And Graphene Exteriors, which application is a 371 of PCT/US13/53939, Filed Aug. 7, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/908,215, Filed on Jun. 3, 2013, now U.S. Pat. No. 8,829,331, which is a continuation in part of U.S. patent application Ser. No. 13/682,229, filed on Nov. 20, 2012, now U.S. Pat. No. 8,586,999, which claims the benefit of U.S. Provisional Application No. 61/681,873, filed Aug. 10, 2012, which is incorporated by reference in its entirety herein.

TECHNICAL FIELD

- Top of Page


This invention relates generally to the generation of electricity using solar energy.

BACKGROUND

- Top of Page


Various modalities of solar energy conversion are known in the art. It is known, for example, to employ photovoltaic junctions in favor of converting sunlight directly into electricity. It is also known to convert sunlight into heat and to then utilize that heat to generate electricity.

That such approaches are known, however, is not a panacea in and of itself. Various implementation and operating problems arise with each such modality of solar energy conversion. Conversion efficiency, for example, varies amongst different modalities with many posited modalities performing quite poorly and none achieving high conversion efficiency. Those relative conversion efficiencies, in turn, quite directly impact the return on investment an enterprise can expect to receive for pursuing a given solar energy conversion system.

Dispatchability is another such example. Dispatchability refers to an ability to contribute electricity to a distribution grid at times of need. Since solar energy conversion requires the presence of the sun, converting solar energy into electricity cannot occur at night in the absence of an energy-storage mechanism. Energy storage can give rise to new concerns, however. Using batteries on a large scale for energy storage, for example, is relatively expensive in a variety of ways.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


The above needs are at least partially met through an apparatus pertaining to solar cells having silicon carbide and/or nanowire titanium oxide cores and graphene exteriors and the co-generation conversion of light into electricity described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:

FIG. 1 comprises a side-elevational, sectioned schematic view as configured in accordance with various embodiments of the invention;

FIG. 2 comprises a side-elevational schematic view as configured in accordance with various embodiments of the invention;

FIG. 3 comprises a top plan view as configured in accordance with various embodiments of the invention;

FIG. 4 comprises a perspective schematic view as configured in accordance with various embodiments of the invention;

FIG. 5 comprises a perspective view as configured in accordance with various embodiments of the invention;

FIG. 6 comprises a top plan view as configured in accordance with various embodiments of the invention

FIG. 7 comprises a top plan view as configured in accordance with various embodiments of the invention;

FIG. 8 comprises a side-elevational schematic view as configured in accordance with various embodiments of the invention

FIG. 9 comprises a side-elevational schematic view as configured in accordance with various embodiments of the invention;

FIG. 10 comprises a perspective schematic view as configured in accordance with various embodiments of the invention;

FIG. 11 comprises a side-elevational schematic view as configured in accordance with various embodiments of the invention; and

FIG. 12 comprises a block diagram view as configured accordance with various embodiments of the invention.

Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. Certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. The terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.

DETAILED DESCRIPTION

- Top of Page


Generally speaking, pursuant to these various embodiments, a plurality of solar cells can each comprise a nanowire titanium oxide core having graphene disposed thereon. By one approach this plurality of solar cells can comprise, at least in part, a titanium foil having the plurality of solar cells disposed thereon wherein at least a majority of the solar cells are aligned substantially parallel to one another and substantially perpendicular to the titanium foil.

A corresponding apparatus can comprise a first modality of solar energy conversion that is disposed between a source of light and a second modality of solar energy conversion. So configured, both the first modality of solar energy conversion and the second modality of solar energy conversion can independently generate electricity using a same source of light. (As used herein, this reference to a “second” modality will be understood to not merely refer to a numerically additional or supplemental modality but will instead be understood to refer to another and different-in-kind modality as compared to the first modality of solar energy conversion.)

By one approach the first modality of solar energy conversion comprises a graphene-based modality of solar energy conversion such as the aforementioned solar cells that each comprise a nanowire titanium oxide core having graphene disposed thereon. The graphene-based modality of solar energy conversion can comprise a photovoltaic transducer that directly converts light into electricity. By one approach the second modality of solar energy conversion serves to convert heat into electricity. In such a case, the graphene-based modality of solar energy conversion can be disposed directly on a heat-absorbing surface that comprises a part of the second modality of solar energy conversion. That heat-absorbing surface, for example, can comprise a fluid-carrying conduit.

Fluids employed in such a second modality of solar energy conversion can be in excess of 350 degrees Centigrade. Such temperatures, of course, are quite inhospitable to the functioning of many ordinary photovoltaic devices that employ silicon or gallium arsenide. Graphene, however, is capable of operating in a satisfactory manner at such temperatures. Accordingly, a graphene-based photovoltaic junction can be expected to maintain photovoltaic functionality at a useful level of energy conversion notwithstanding the high temperatures of the adjacent second modality of solar energy conversion.

Accordingly, so configured, such a system comprises a cogeneration system for converting light into electricity. Depending upon the design employed the relative conversion efficiency of each modality can be relatively similar. By one approach, electricity generated by the graphene-based modality of solar energy conversion can be provided in real time to a distribution grid. Heat generated by the second modality of solar energy conversion, however, can be utilized immediately to generate electricity or can be stored and utilized later (for example, during a late afternoon period of peak loading and/or during the evening hours) to generate electricity to contribute to the distribution grid.

Such a co-generation facility offers other advantages beyond the improved dispatchability capability noted above. For example, the relative cost of such a co-generation facility need not be appreciably more than the cost of building and operating the second modality of solar energy conversion as an isolated system. To some very real extent, the present teachings permit leveraging the availability of such a system by greatly increasing the power output of the overall system while greatly enhancing the ability to time shift the distribution of the generated electricity. Accordingly, the present teachings offer a highly flexible approach to generating and distributing electricity.




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors patent application.

###


Browse recent Dimerond Technologies, Llc patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors or other areas of interest.
###


Previous Patent Application:
Solar cell superfine electrode transfer thin film, manufacturing method and application method thereof
Next Patent Application:
Solar device diagnosis method
Industry Class:

Thank you for viewing the Solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors patent info.
- - -

Results in 0.04176 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Apple ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2237

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20170054044 A1
Publish Date
02/23/2017
Document #
15264006
File Date
09/13/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
6


Cells Graph Graphene Modal Nanowire Silicon Silicon Carbide Titanium

Follow us on Twitter
twitter icon@FreshPatents

Dimerond Technologies, Llc


Browse recent Dimerond Technologies, Llc patents





Browse patents:
Next
Prev
20170223|20170054044|solar cells having nanowire titanium oxide and/or silicon carbide cores and graphene exteriors|An apparatus comprising a plurality of solar cells that each comprise a nanowire titanium oxide core having graphene disposed thereon. By one approach this plurality of solar cells can comprise, at least in part, a titanium foil having the plurality of solar cells disposed thereon wherein at least a majority |Dimerond-Technologies-Llc
';