Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Dynamic provisioning of a virtual storage appliance / Os Nexus, Inc.




Dynamic provisioning of a virtual storage appliance


Systems, methods, and apparatus for facilitating dynamic provisioning of a virtual storage appliance in a cloud computing environment are presented herein. A storage system management component can provision storage from a storage medium to facilitate access of at least a portion of the storage by a virtual storage appliance (VSA) based on a request for at least one resource associated with the VSA. Further, a network management component can provision the VSA to facilitate...



Browse recent Os Nexus, Inc. patents


USPTO Applicaton #: #20170041396
Inventors: Steven Michael Umbehocker


The Patent Description & Claims data below is from USPTO Patent Application 20170041396, Dynamic provisioning of a virtual storage appliance.


CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to each of, U.S. patent application Ser. No. 14/734,866, filed Jun. 9, 2015, and entitled “DYNAMIC PROVISIONING OF A VIRTUAL STORAGE APPLIANCE”, which is a continuation of Ser. No. 13/434,247 (now U.S. Pat. No. 9,058,107), filed Mar. 29, 2012, and entitled “DYNAMIC PROVISIONING OF A VIRTUAL STORAGE APPLIANCE”, which claims priority to U.S. Provisional Application Ser. No. 61/468,959 filed Mar. 29, 2011, and entitled “METHOD AND SERVICES FOR THE DYNAMIC PROVISIONING OF VIRTUAL STORAGE APPLIANCES”, the entireties of each are incorporated herein by reference.

TECHNICAL FIELD

- Top of Page


This disclosure relates generally to data storage including, but not limited to, dynamic provisioning of a virtual storage appliance.

BACKGROUND

- Top of Page


Although conventional processing systems can utilize and deploy virtual servers in cloud computing environments to improve load balancing of applications, conventional techniques cannot adequately provide dynamic provisioning of customized virtual storage appliances (VSAs) in such environments.

The above-described deficiencies of today's virtual server environments and related technologies are merely intended to provide an overview of some of the problems of conventional technology, and are not intended to be exhaustive, representative, or always applicable. Other problems with the state of the art, and corresponding benefits of some of the various non-limiting embodiments described herein, may become further apparent upon review of the following detailed description.

SUMMARY

- Top of Page


A simplified summary is provided herein to help enable a basic or general understanding of various aspects of illustrative, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some illustrative non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow. It will also be appreciated that the detailed description may include additional or alternative embodiments beyond those described in this summary.

In accordance with one or more embodiments and corresponding disclosure, various non-limiting aspects are described in connection with dynamically provisioning a virtual storage appliance (VSA) in a cloud computing environment. In one or more aspects, storage network component(s), e.g., storage network(s), virtual local area networks (VLANs), virtual storage area networks (VSANs), virtual host bus adaptors (HBAs), etc. communicatively coupled to a VSA can enable the VSA to provide end-users with all the features of a dedicated storage system without the cost having to purchase and configure additional hardware for each new system. In one or more other aspects, components of a cloud computing environment can be intelligently analyzed and new VSAs can be dynamically deployed with minimal or no human intervention. As such, companies and cloud service providers can deploy VSAs en-mass for their users and customer base in an automated fashion, monitor the VSAs, and greatly reduce the cost of managing complex storage environments.

For instance, a storage system management component can provision storage from a storage medium, e.g., a storage system, a storage appliance, a solid state disk (SSD), heterogeneous storage, etc. to provide dedicated storage for the virtual storage appliance. Further the storage management component can configure access of at least a portion of the storage, e.g., so that the portion can be utilized by a virtual storage appliance (VSA), e.g., server, compute server, virtual server, etc. based on a request for resource(s) to be associated with the VSA. Further, a cloud management component can provision the VSA based on policies, and facilitate access of the portion of the storage by the VSA.

In another embodiment, a cloud provisioning portal can receive the request via a network, e.g., Internet. Further, the resource(s) can include the VSA resource requirements and/or at least a portion of the storage requirements. In yet another embodiment, the request can define a location where the VSA should be deployed and/or a geographic or datacenter location of the portion of the storage to be provisioned. In one embodiment, the request for VSA provisioning or expansion can define a performance criterion, e.g., associated with a service level agreement (SLA), an amount of the storage, a minimum performance of the storage, a processing performance, etc.

In an embodiment, the cloud management component can provision the VSA utilizing at least a portion of the storage. For example, the cloud management component can create a boot image using snapshot mechanisms, e.g., within the portion of the storage, to facilitate the initial configuration of a new VSA. Further, the cloud management component can allocate, assign, etc. the portion of the storage to the VSA for use by the VSA. In another embodiment, the cloud management component can dynamically allocate the VSA in a hypervisor cluster, or virtual machine manager (VMM) cluster, as a virtual machine, operating platform, etc.

In yet another embodiment, a storage management component can dynamically create one or more virtual SANs for respective VSANs, and perform storage network zoning of a switch, or storage fabric(s), to facilitate the access of the portion of the storage by the VSA. For example, the switch can include storage technologies, e.g., Small Computer System Interface (SCSI), Internet SCSI (iSCSI), Fibre Channel (FC), FC over Ethernet (FCoE), SCSI-over-Fiber Channel, Serial Storage Architecture (SSA), Advanced Technology (AT) Attachment (ATA) interface, ATA over Ethernet (AoE), other Storage Area Network (SAN) protocol(s), etc. communicatively coupled between the VSA and the storage medium.

In an embodiment, the storage management component can configure the hypervisor to provision one or more virtual HBAs for the VSA so that the VSA can login to the switch, storage fabric(s), etc. and access back-end storage for the VSA as provided by, e.g., previous provisioning operation(s). Through dynamic discovery of fabric, system, and storage system configuration data, the storage management component can intelligently orchestrates configuration of appropriate elements of the cloud computing environment.

In one embodiment, a network configuration component can dynamically discover which VLAN the VSA should be added to, dynamically discover network information associated with the VSA, and utilize such information during VLAN configuration so as to restrict access to the VSA, e.g., to a given user, customer, etc.

In one embodiment, a license configuration component can allocate a license key that is associated with the VSA, and authorize the access of the portion of the storage by the VSA, based on the license key. In another embodiment, a monitor component can monitor performance of the VSA and/or the storage based on the access of the portion of the storage by the VSA.

In one non-limiting implementation, a method can include receiving, by a system including at least one processor, a request for a resource that is associated with a VSA. In one example, the request can include a request for the VSA and/or a request for storage space. In another example, the request can be received by the system via the Internet.

Further, the method can include provisioning, by the system, storage space from a tier of storage based on the request. In one embodiment, the tier of storage can be heterogeneous, including various forms, sizes, and/or qualities of computer-readable storage media, e.g., including fault-tolerance and high-availability levels. In another embodiment, the method can include provisioning, by the system, the VSA to facilitate access of the storage space by the VSA. In other embodiment(s), the provisioning the VSA can include allocating, by the system, at least a portion of the storage space to the VSA; creating, by the system, a snapshot of a boot drive of the VSA on the tier of the storage, or in an arbitrary pool of storage from another storage medium; allocating, by the system, the VSA in a hypervisor cluster as a virtual machine; and/or allocating, by the system, a license key to the VSA to facilitate the access of the storage space by the VSA.

In one embodiment, the method can include configuring, by the system, a component, e.g., storage fabric, VSAN, zoning of a VSAN, storage switch, network switch, VLAN, transmission media, etc. of a network communicatively coupled between the VSA and the storage space to facilitate the access of the storage space by the VSA.

In another embodiment, the method can include monitoring, by the system, performance of the VSA and/or the storage space based on the access of the storage space by the VSA.

In another non-limiting implementation, a method can include allocating storage from a computer-readable storage medium to a VSA in response to receiving a request for a resource that is to be associated with the VSA. Further, the method can include facilitating access to the storage by the VSA via a network.

Other embodiments and various non-limiting examples, scenarios, and implementations are described in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


Various non-limiting embodiments are further described with reference to the accompanying drawings in which:

FIG. 1 illustrates a block diagram of a cloud computing infrastructure, in accordance with an embodiment.

FIG. 2 illustrates a block diagram of another cloud computing infrastructure, in accordance with an embodiment.

FIG. 3 illustrates a block diagram of a network switch component, in accordance with an embodiment.

FIG. 4 illustrates a block diagram of a virtual storage appliance (VSA) management system, in accordance with an embodiment.

FIG. 5 illustrates a block diagram of yet another cloud computing infrastructure, in accordance with an embodiment.

FIGS. 6-10 illustrate various processes associated with one or more cloud computing infrastructures, in accordance with an embodiment.

FIG. 11 illustrates a block diagram of a computing system operable to execute the disclosed systems and methods, in accordance with an embodiment.




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Dynamic provisioning of a virtual storage appliance patent application.

###


Browse recent Os Nexus, Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Dynamic provisioning of a virtual storage appliance or other areas of interest.
###


Previous Patent Application:
Dynamic ordering of online advertisement software steps
Next Patent Application:
Dynamic radius threshold selection
Industry Class:

Thank you for viewing the Dynamic provisioning of a virtual storage appliance patent info.
- - -

Results in 0.04297 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.257

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20170041396 A1
Publish Date
02/09/2017
Document #
15295707
File Date
10/17/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
12


Cloud Cloud Computing Network Management Provisioning Storage Appliance System Management Work Management

Follow us on Twitter
twitter icon@FreshPatents

Os Nexus, Inc.


Browse recent Os Nexus, Inc. patents





Browse patents:
Next
Prev
20170209|20170041396|dynamic provisioning of a virtual storage appliance|Systems, methods, and apparatus for facilitating dynamic provisioning of a virtual storage appliance in a cloud computing environment are presented herein. A storage system management component can provision storage from a storage medium to facilitate access of at least a portion of the storage by a virtual storage appliance (VSA) |Os-Nexus-Inc
';