Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Low volatility auxin herbicide formulations




Low volatility auxin herbicide formulations


Low volatility dicamba herbicide formulations are described. In some embodiments, concentrate formulations comprising dicamba monoethanolamine salt, dicamba potassium salt, or mixed dicamba salts are provided. In other embodiments, a dicamba salt is combined with a polybasic polymer.



Browse recent Monsanto Technology Llc patents - St. Louis, MO, US
USPTO Applicaton #: #20160366878
Inventors: Daniel R. Wright, Eric J. Roskamp, Ronald J. Brinker


The Patent Description & Claims data below is from USPTO Patent Application 20160366878, Low volatility auxin herbicide formulations.


REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 13/389,864, filed Feb. 10, 2012, based on PCT application PCT/US10/44873, filed Aug. 9, 2010, claiming priority to U.S. Provisional Application No. 61/232,710, filed Aug. 10, 2009, the entire disclosures of which are incorporated by reference.

FIELD OF THE INVENTION

- Top of Page


The present invention generally relates to low volatility auxin herbicide formulations.

BACKGROUND

- Top of Page


OF THE INVENTION

Auxin herbicides have proven to be effective and highly beneficial for control of unwanted plants. Auxin herbicides include 2,4-D (2,4-dichlorophenoxyacetic acid), 2,4-DB (4-(2,4-dichlorophenoxy)butanoic acid), dichloroprop (2-(2,4-dichlorophenoxy)propanoic acid), MCPA ((4-chloro-2-methylphenoxy)acetic acid), MCPB (4-(4-chloro-2-methylphenoxy)butanoic acid), am inopyralid (4-amino-3,6-dichloro-2-pyridinecarboxylic acid), clopyralid (3,6-dichloro-2-pyridinecarboxylic acid), fluroxypyr ([(4-amino-3,5-dichloro-6-fluoro-2-pyridinyl)oxy]acetic acid), triclopyr ([(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid), diclopyr, mecoprop (2-(4-chloro-2-methylphenoxy)propanoic acid) and mecoprop-P, dicamba (3,6-dichloro-2-methoxybenzoic acid), picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), quinclorac (3,7-dichloro-8-quinolinecarboxylic acid), am inocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid), agriculturally acceptable salts of any of these herbicides, racemic mixtures and resolved isomers thereof, and mixtures thereof. Dicamba has proven to be a particularly effective auxin herbicide and is typically formulated as the sodium, dimethylamine, isopropylamine or diglycolamine salt.

Volatility and drift problems are commonly associated with auxin herbicides. Volatile auxin herbicides can, under certain conditions of application, vaporize into the surrounding atmosphere and thereby migrate from the application site to adjacent crop plants, such as soybeans and cotton, where contact damage to sensitive plants can occur. Spray drift can be attributed to volatility as well as to the physical movement of small particles, such as spray droplet particles, from the target site to adjacent crop plants.

Prior art solutions to volatility and drift have failed to successfully regulate off-target dicamba movement from the application site. Attempts to reduce volatility have been made by formulating dicamba in the form of various mineral or amine salts. For example, the commercial product CLARITY® (available from BASF) is a formulation comprising the diglycolamine salt of dicamba and the commercial product BANVEL® (available from BASF) is a formulation comprising the dimethylamine salt of dicamba. Problematically however, crop plants such as soybean and cotton or sensitive plants such as vegetables and flowers located in an area wherein CLARITY or BANVEL has been applied can still exhibit symptoms of injury such as leaf cupping, leaf malformation, leaf necrosis, terminal bud kill and/or delayed maturity.

Other attempts to reduce dicamba volatilization have focused on encapsulation. In one approach, dicamba is absorbed into solid phase natural or synthetic polymers. However, the resulting particle sizes are typically not suitable for spray application therefore limiting use to granular drop application. Microencapsulation in a polymer shell is also known in the art, but the relatively high solubility of dicamba and its salts precludes successful use of that technology in aqueous suspensions and commercial dicamba microencapsulation products have not been developed.

A need persists for low volatility auxin herbicide formulations that are efficacious, yet non-phytotoxic to sensitive crops located in areas adjacent to the target site, and for auxin formulations that are less prone to volatility and physical drift.

SUMMARY

- Top of Page


OF THE INVENTION

Among the various aspects of the present invention may be noted the provision of auxin herbicide formulations exhibiting low volatility and/or drift and methods for their use.

Briefly, therefore, the present invention is directed to an aqueous herbicidal solution concentrate formulation useful for killing or controlling the growth of unwanted plants, the formulation comprising a solution comprising an auxin herbicide component consisting essentially of auxin herbicide salts and comprising at least 50 grams acid equivalent per liter of dicamba monoethanolamine salt.

The present invention is further directed to an aqueous herbicidal solution concentrate formulation useful for killing or controlling the growth of unwanted plants, the formulation comprising a solution comprising an auxin herbicide component consisting essentially of auxin herbicide salts and comprising at least 550 grams acid equivalent per liter of dicamba potassium salt.

The present invention is further directed to an aqueous herbicidal solution concentrate formulation useful for killing or controlling the growth of unwanted plants, the formulation comprising an auxin herbicide component consisting essentially of auxin herbicide salts and comprising at least 50 grams acid equivalent per liter of dicamba diethanolamine salt.

The present invention is further directed to low volatility auxin herbicide formulations comprising an auxin herbicide component consisting essentially of an auxin herbicide salt or a mixture of auxin herbicide salts and a polybasic polymer or mixture of polybasic polymers, wherein the formulation is an aqueous solution. The polymer has a molecular weight of from 600 to 3,000,000 Daltons and has a nitrogen content of from 13 to 50 percent by weight

The present invention is further directed to a method of using an auxin herbicide to control auxin-susceptible plants growing in and/or adjacent to a field of crop plants. The method comprises diluting a formulation comprising a solution of (i) at least 50 grams acid equivalent per liter of dicamba monoethanolamine salt or dicamba diethanolamine salt or at least 550 grams acid equivalent per liter of dicamba potassium salt with water to provide an aqueous herbicidal application mixture or (ii) forming an aqueous application mixture from a low volatility auxin herbicide formulation comprising an auxin herbicide component consisting essentially of an auxin herbicide salt or a mixture of auxin herbicide salts and a polybasic polymer or mixture of polybasic polymers. The aqueous herbicidal application mixture is applied to the foliage of the auxin-susceptible plants.

The present invention is further directed to a method of reducing the volatility of auxin herbicides. The method comprises providing a nitrogen containing polybasic polymer source for use in preparation of an aqueous herbicidal application mixture comprising an auxin herbicide for application to auxin susceptible plants. The auxin herbicide content of said auxin herbicide consists essentially of the salts of one or more auxin herbicide species. The polybasic polymer has a molecular weight from 600 to 3,000,000 Daltons and has a nitrogen content from 10 to 50 percent by weight.

The present invention is still further directed to a method for controlling auxin susceptible plants. The method comprises obtaining a nitrogen containing polybasic polymer source comprising at least one polybasic polymer species, wherein the polybasic polymer has an average molecular weight of from 600 to 3,000,000 Daltons and has an average nitrogen content of from 13 to 50 percent by weight and obtaining an auxin herbicide source having a herbicide content consisting essentially of one or more auxin herbicide salt species. The nitrogen containing polybasic polymer source and auxin herbicide source are mixed with water to produce an aqueous auxin application mixture that is applied to the auxin susceptible plants.

The present invention is yet further directed to a method of counseling a person responsible for control of auxin susceptible plants. The method comprises (i) identifying an auxin herbicide source to be used in the preparation of an aqueous auxin application mixture, the auxin herbicides contained in said auxin herbicide source consisting essentially of one or more auxin herbicide salt species, (ii) identifying a nitrogen containing polybasic polymer source comprising at least one polybasic polymer species, wherein the polybasic polymer has an average molecular weight of from 600 to 3,000,000 Daltons and has an average nitrogen content of from 13 to 50 percent by weight and (iii) enabling said person to prepare said aqueous auxin application mixture from materials comprising said auxin herbicide source and said nitrogen containing polybasic polymer source for application to said auxin susceptible plants.

Other objects and features will be in part apparent and in part pointed out hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


FIG. 1 is a graph depicting the percent of spray volume for prior art compositions and compositions of the present invention having droplet particle sizes of less than 150 microns and less than 100 microns wherein the prior art and inventive composition solutions contained about 0.56 weight percent acid equivalent dicamba and were sprayed at 165 kPa pressure by means of a flatfan 9501E nozzle.

Corresponding reference characters indicate corresponding parts throughout the drawings.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the present invention, auxin herbicide formulations exhibiting low volatility, controlled droplet particle size, reduced physical and reduced vapor drift are provided. As compared to auxin formulations known in the art, it is believed that the formulations of the present invention provide enhanced protection from crop injury to auxin tolerant or resistant crops while maintaining comparably effective herbicidal efficacy on unwanted plants located in the target area. Throughout the remainder of the description of the invention, where reference to the auxin herbicide dicamba is made, one skilled in the art will understand that the principles of the present invention apply generally to auxin herbicides, including those described above, and the invention is not limited to dicamba herbicidal formulations.

In some embodiments of the present invention, formulations and methods are provided that effectively control auxin herbicide release to give both commercially acceptable weed control and a commercially acceptable rate of crop injury. In some other embodiments, the formulations provide enhanced crop protection in over the top application to plants.

In accordance with the present invention, a “commercially acceptable rate of weed control” varies with the weed species, degree of infestation, environmental conditions, and the associated crop plant. Typically, commercially effective weed control is defined as least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 90%, 95% or even greater than 95%. Although it is generally preferable from a commercial viewpoint that 80-85% or more of the weeds be destroyed, commercially significant weed control can occur at much lower levels, particularly with some very noxious, herbicide-resistant plants. “Weed control,” as used herein, refers to any observable measure of control of plant growth, which can include one or more of the actions of (1) killing, (2) inhibiting growth, reproduction or proliferation, and (3) removing, destroying, or otherwise diminishing the occurrence and activity of plants. Weed control can be measured by any of the various methods known in the art. For example, weed control can be determined as a percentage as compared to untreated plants following a standard procedure wherein a visual assessment of plant mortality and growth reduction is made by one skilled in the art specially trained to make such assessments. In another control measurement method, control is defined as an average plant weight reduction percentage between treated and untreated plants. Preferably, commercial weed control is achieved at no greater than 30 days after treatment (DAT), such as from 18 to 30 DAT.

A “commercially acceptable rate of crop injury” for the present invention likewise varies with the crop plant species. Typically, a commercially acceptable rate of crop injury is defined less than about 20%, 15%, 10% or even less than about 5%. Crop damage can be measured by any means known in the art, such as those describe above for weed control determination. Preferably, crop damage appears no more than from 10% to 20% at no greater than 30 DAT, such as from 3 to 21 or from 3 to 30 DAT.

The auxin-susceptible plants can be weeds or crop plants. Crop plants include, for example, vegetable crops, grain crops, flowers, root crops and sod. Crop plants of the present invention include hybrids, inbreds, and transgenic or genetically modified plants.




← Previous       Next →

Download full PDF for full patent description, claims and images

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Low volatility auxin herbicide formulations patent application.

###

Browse recent Monsanto Technology Llc patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Low volatility auxin herbicide formulations or other areas of interest.
###


Previous Patent Application:
Low solvent liquid detergent compositions
Next Patent Application:
Low voltage triggered silicon controlled rectifier with high holding voltage and small silicon area
Industry Class:

Thank you for viewing the Low volatility auxin herbicide formulations patent info.
- - -

Results in 0.17986 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3388

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20160366878 A1
Publish Date
12/22/2016
Document #
15093289
File Date
04/07/2016
USPTO Class
Other USPTO Classes
International Class
/
Drawings
2


Auxin Ethanol Herbicide Polymer Potassium

Follow us on Twitter
twitter icon@FreshPatents

Monsanto Technology Llc

Browse recent Monsanto Technology Llc patents



Browse patents:
Next
Prev
20161222|20160366878|low volatility auxin herbicide formulations|Low volatility dicamba herbicide formulations are described. In some embodiments, concentrate formulations comprising dicamba monoethanolamine salt, dicamba potassium salt, or mixed dicamba salts are provided. In other embodiments, a dicamba salt is combined with a polybasic polymer. |Monsanto-Technology-Llc
';