Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
NextPrevious

System and method for anticipatory receiver switching based on signal quality estimation




Title: System and method for anticipatory receiver switching based on signal quality estimation.
Abstract: In various embodiments, a first and second complex multiplier may be configured to receive an input signal and provide a baseband I component signal and a baseband Q component signal, respectively. A first and second filter may be configured to filter the baseband I component signal and the baseband Q component signal, respectively. An equalizer may be configured to equalize the filtered baseband I component signal and the filtered baseband Q component signal. A carrier recovery portion may be configured to generate a reference signal based on the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal. A first and second multilevel comparator may be configured to receive the equalized filtered baseband I component signal from the carrier recovery portion and provide an output I and receive the equalized filtered baseband Q component signal and provide an output Q signal for further modulation. ...

Browse recent Aviat U.s., Inc. patents


USPTO Applicaton #: #20140226706
Inventors: Tjo San Jao, Richard Bourdeau


The Patent Description & Claims data below is from USPTO Patent Application 20140226706, System and method for anticipatory receiver switching based on signal quality estimation.

CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of, and claims priority under 35 U.S.C. §120 to, U.S. patent application Ser. No. 13/342,850, filed Jan. 3, 2012, entitled “System and Method for Anticipatory Receiver Switching Based on Signal Quality Estimation,” now U.S. Pat. No. 8,687,737, which is a continuation of, and claims priority under 35 U.S.C. §120 to, U.S. patent application Ser. No. 12/503,805, filed Jul. 15, 2009, entitled “System and Method for Anticipatory Receiver Switching Based on Signal Quality Estimation,” now U.S. Pat. No. 8,090,056, which is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 11/452,216, filed Jun. 14, 2006, entitled “System and Method for Anticipatory Receiver Switching Based on Signal Quality Estimation,” now U.S. Pat. No. 7,570,713, each of which is incorporated herein by reference.

BACKGROUND

- Top of Page


Radio communication systems are becoming more reliable, and the Mean Time Between Failure (MTBF) associated therewith is high. However, in microwave radio transmission, the associated transmission link may be long and multipath may be frequently encountered. Multipath refers to multiple transmission paths between transmit and receive antennas of a communication system. Multipath may result in both frequency-selective fading and space-selective fading. Frequency-selective fading generally indicates that a channel varies with frequency. Space-selective fading generally indicates that a channel is dependent upon the position of the respective transmit and receive antennas. When multipath interferes with reception of a radio transmission signal, the received signal is distorted causing errors in the corresponding demodulated data stream.

FIG. 1A illustrates an arrangement of symbol points in accordance with a 4 QAM (Quadrature Amplitude Modulation) method on an I-Q coordinate plane. With reference to FIG. 1A, a symbol point of a received signal corresponds to any of four signal points positioned concentrically on the I-Q coordinate plane. Therefore, it is possible to transmit at one time 2 bits of data representing any of the four signal points.

Advances in radio communication systems, however, require data transmission of larger volume at higher speeds. Accordingly, multiple value (M-ary) modulation methods having values larger than the 4 QAM modulation method described above have been developed. As an example of such an M-ary modulation method, 16 QAM is commonly employed in data communications. FIG. 1B is an illustration of an arrangement of symbol points in accordance with the 16 QAM modulation method on the I-Q coordinate plane. With reference to FIG. 1B, a symbol point of a received signal corresponds to any of a total of 16 signal points on the coordinate plane, arranged four by four in a lattice form in each quadrant of the I-Q coordinate plane. Therefore, it is possible to transmit at one time 4 bits of data representing any of the 16 signal points.

When a modulation method having a larger M-ary number is employed and the communication environment of the propagation path is defective (i.e., if the propagation path has severe interference, noise or encounters multi-path), symbol points may be recognized erroneously since the interval between each of the symbol points is narrow and the symbol points are arranged tightly in the respective modulation method, as may be seen from the arrangement of symbol points of FIG. 1B. Therefore, though this method has a communication speed faster than the 4 QAM modulation method illustrated in FIG. 1A, it is more susceptible to reception errors.

In a radio communication environment prone to multipath, several known techniques may be implemented to mitigate the effects of multipath. Prior art techniques commonly used to protect a signal path include switching from an online channel, receiver or antenna to a standby channel, receiver or antenna by 1+1 Frequency Diversity (FD) or 1+1 Space Diversity (SD) or combination thereof.

SD may commonly be provided by utilizing multiple receive antennas separated by a sufficient distance to take advantage of space-selective fading. With reference to FIG. 2, a prior art method is illustrated that utilizes SD with two receive antennas including a separate receiver connected to each receive antenna. A pair of antennas 201, 202 are coupled to respective receivers 203, 205 that demodulate the signals received at each antenna. An antenna selection circuit 209 accepts the demodulated output of the receivers and provides control to an antenna switch 207 to select a data set having the least amount of error.

The aforementioned diversity techniques and examples, however, are not always appropriate for evaluating the communication quality of the propagation path. For example, different radio reception apparatuses employ different methods of reception and performances. Qualities of components, such as filters used in the reception apparatuses, vary and such differences and variations have an influence on the quality of communication. Conventional parameters such as reception level, frame error rate, and carrier to interference ratios (CIR) do not reflect such quality or performances of the reception apparatuses. Further, as may be seen from a comparison of the modulation methods shown in FIGS. 1A and 1B, even when there is no reception error with a modulation method having smaller M-ary values, it is unpredictable whether there arises reception error or not with another modulation method (16, 64, 128, 256 QAM) having a larger M-ary values (i.e., having dense symbol points on the I-Q plane). As a result, special and complicated procedures and hardware are necessary to measure the respective conventional parameters of the propagation path during communication.

Thus, there is a need in the art for a system and method of selecting antennas or receivers in a multipath environment without incurring any errors in the received signal.

Accordingly, it is an object of the present subject matter to obviate many of the deficiencies in the prior art and to provide a novel method of switching from a first receiver receiving a constant bit rate signal to a second receiver receiving the constant bit rate signal, where the constant bit rate signal received by the first and second receivers is converted to a first baseband signal and a second baseband signal. The method further comprises the steps of estimating a signal quality metric of the first baseband signal, comparing the signal quality metric to a predetermined threshold, and switching from the first baseband signal to the second baseband signal if the signal quality metric is greater than the threshold.

It is also an object of the present subject matter to provide a novel method of switching from a first receiver receiving a constant bit rate signal to a second receiver receiving the constant bit rate signal, where the constant bit rate signal received by the first and second receivers is converted to a first baseband signal and a second baseband signal, respectively. The method further comprises the steps of estimating a first signal quality metric of the first baseband signal, estimating a second signal quality metric of the second baseband signal, comparing the first signal quality metric to the second signal quality metric, and switching from the first baseband signal to the second baseband signal if the first signal quality metric is greater than the second signal quality metric.

It is another object of the present subject matter to provide a novel system for switching from a first receiver receiving a constant bit rate signal to a second receiver receiving the constant bit rate signal. The system comprises a first converting circuit for converting the signal from the first receiver to a first baseband signal and a second converting circuit for converting the signal from the second receiver to a second baseband signal. The system further comprises an estimating circuit for estimating a first signal quality metric of the first baseband signal, a comparing circuit for comparing the first signal quality metric to a predetermined threshold, and a switching circuit for switching from the first baseband signal to the second baseband signal if the first signal quality metric is greater than the predetermined threshold.

It is still an object of the present subject matter to provide a novel system of switching from a first receiver receiving a constant bit rate signal to a second receiver receiving the constant bit rate signal comprising a first converting circuit for converting the signal from the first receiver to a first baseband signal and a second converting circuit for converting the signal from the second receiver to a second baseband signal. The system also comprises a first estimating circuit for estimating a first signal quality metric of the first baseband signal, a second estimating circuit for estimating a second signal quality metric of the second baseband signal, a comparing circuit for comparing the first signal quality metric to the second signal quality metric, and a switching circuit for switching from the first baseband signal to the second baseband signal if the first signal quality metric is greater than the second signal quality metric.

These and many other objects and advantages of the present invention will be readily apparent to one skilled in the art to which the invention pertains from a perusal of the claims, the appended drawings, and the following detailed description of the preferred embodiments.

SUMMARY

- Top of Page


OF THE INVENTION

In various embodiments, a system comprises a first and second complex multiplier, a first and second filter, an equalizer, a carrier recovery portion, and a first and second multilevel comparator. The first complex multiplier may be configured to receive an input signal and provide a baseband I component signal. The second complex multiplier may be configured to receive the input signal and provide a baseband Q component signal. The first filter may be configured to filter the baseband I component signal. The second filter may be configured to filter the baseband Q component signal. The equalizer may be configured to equalize the filtered baseband I component signal and to equalize the filtered baseband Q component signal. The carrier recovery portion may be configured to generate a reference signal based on the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal. The first multilevel comparator may be configured to receive the equalized filtered baseband I component signal from the carrier recovery portion and provide an output I signal for further demodulation. The second multilevel comparator may be configured to receive the equalized filtered baseband Q component signal from the carrier recovery portion and provide an output Q signal for further demodulation.

The system may further comprise a lookup table (LUT) wherein the LUT provides a sine signal to the first complex multiplier and a cosine signal to the second complex multiplier. The sine signal and the cosine signal may be based on the reference signal from the carrier recovery portion. Further, the sine signal may be substantially the same carrier frequency and is in phase with the input signal and the cosine signal may be substantially the same carrier frequency and is in quadrature phase with the input signal.

The system may also further comprise a signal quality estimation circuit configured to estimate a signal quality based on the filtered baseband I component signal and the filtered baseband Q component signal. The signal quality estimation circuit may be configured to estimate a signal quality based on the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal. Further, the signal quality estimation circuit may be configured to estimate a signal quality based on the equalized filtered baseband I component signal received form the carrier recovery portion and the equalized filtered baseband Q component signal received from the carrier recovery portion.

The signal quality estimation circuit may comprise a distance calculator, an average calculator, and a comparator. The distance calculator may be configured to determine a distance between an ideal symbol and a received symbol of the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal. The average calculator may be configured to determine an average distance between based on the distance from the distance calculator. The comparator may be configured to compare the average distance to a predetermined threshold. The signal quality estimation circuit may be further configured to generate an alert signal when a quality is low based on the comparison of the average distance to the predetermined threshold.

In various embodiments, a method may comprise multiplying an input signal with a sine signal to provide a baseband I component signal, multiplying the input signal with a cosine signal to provide a baseband Q component signal, filtering the baseband I component signal, filtering the baseband Q component signal, equalizing the filtered baseband I component signal, equalizing the filtered baseband Q component signal, generating a reference signal based on the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal, comparing the equalized filtered baseband I component signal to provide an output I signal for further demodulation, and comparing the equalized filtered baseband Q component signal to provide an output Q signal for further demodulation.

A system may comprise a means for multiplying an input signal with a sine signal to provide a baseband I component signal, a means for multiplying the input signal with a cosine signal to provide a baseband Q component signal, a means for filtering the baseband I component signal, a means for filtering the baseband Q component signal, a means for equalizing the filtered baseband I component signal, a means for equalizing the filtered baseband Q component signal, a means for generating a reference signal based on the equalized filtered baseband I component signal and the equalized filtered baseband Q component signal, a means for comparing the equalized filtered baseband I component signal to provide an output I signal for further demodulation, and a means for comparing the equalized filtered baseband Q component signal to provide an output Q signal for further demodulation.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1a and 1b illustrate a representation of arrangements of symbol points of 4 QAM and 16 QAM, respectively, on an I-Q coordinate plane.

FIG. 2 is a simplified block diagram of a prior art receiving apparatus that includes two receivers and compares the received signals after demodulation to select an antenna for reception.

FIG. 3 is a simplified block diagram of a signal quality estimation circuit according to an embodiment of the present subject matter.

FIG. 4 is a functional block diagram of a signal quality estimation method according to an embodiment of the present subject matter.

FIG. 5 is an illustration of the ideal constellation points of a 4 QAM modulation method having a received symbol in the (1,1) quadrant.

FIG. 6 is a simplified block diagram of a 1+1 SD configuration according to an embodiment of the present subject matter.

FIG. 7 is a simplified block diagram of a 1+1 FD configuration according to an embodiment of the present subject matter.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this System and method for anticipatory receiver switching based on signal quality estimation patent application.
###
monitor keywords


Browse recent Aviat U.s., Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method for anticipatory receiver switching based on signal quality estimation or other areas of interest.
###


Previous Patent Application:
Adaptive real-time control of de-emphasis level in a usb 3.0 signal conditioner based on incoming signal frequency range
Next Patent Application:
Offset and decision feedback equalization calibration
Industry Class:
Pulse or digital communications
Thank you for viewing the System and method for anticipatory receiver switching based on signal quality estimation patent info.
- - -

Results in 0.104 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.5372

66.232.115.224
Next →
← Previous

stats Patent Info
Application #
US 20140226706 A1
Publish Date
08/14/2014
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Baseband Modulation

Follow us on Twitter
twitter icon@FreshPatents

Aviat U.s., Inc.


Browse recent Aviat U.s., Inc. patents



Pulse Or Digital Communications   Equalizers   Automatic   Adaptive  

Browse patents:
Next →
← Previous
20140814|20140226706|anticipatory receiver switching based on signal quality estimation|In various embodiments, a first and second complex multiplier may be configured to receive an input signal and provide a baseband I component signal and a baseband Q component signal, respectively. A first and second filter may be configured to filter the baseband I component signal and the baseband Q |Aviat-U-s-Inc