FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2014: 2 views
Updated: October 26 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Molding apparatus

last patentdownload pdfdownload imgimage previewnext patent


20140151929 patent thumbnailZoom

Molding apparatus


An in-mold shutter (140) for embedding in an injection mold (100, 200, 300) is described herein. The in-mold shutter (140, 240, 340, 440, 540) includes a shutter actuator (148, 548) that is configured to selectively engage a first mold shoe (130) of the injection mold (100, 200, 300) with a platen of a mold clamping assembly (996) to hold the first mold shoe (130) in an extended position (E), along a mold-stroke axis (X), during a step of molding a first molded article (102A) in the injection mold (100, 200, 300). Also described herein is a molded article transfer device (150, 250) for use with the injection mold (100, 200, 300). The molded article transfer device (150, 250) includes a shuttle (154) that is slidably arranged, in use, within the injection mold (100, 200, 300). The shuttle (154) defines a first aperture (156A), at least in part, that alternately accommodates: (i) a first mold stack (106A, 206A, 306A) arranged therein; and (ii) a first molded article (102A) received therein with opening of the first mold stack (106A, 206A, 306A).
Related Terms: Elective Embedding

Browse recent Husky Injection Molding Systems Ltd. patents - Bolton, CA
USPTO Applicaton #: #20140151929 - Class: 2643281 (USPTO) -
Plastic And Nonmetallic Article Shaping Or Treating: Processes > Mechanical Shaping Or Molding To Form Or Reform Shaped Article >Shaping Against Forming Surface (e.g., Casting, Die Shaping, Etc.) >Applying Heat Or Pressure >Introducing Material Under Pressure Into A Closed Mold Cavity (e.g., Injection Molding, Etc.)

Inventors: Christophe Halter, Pierre Glaesener, François Styga

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140151929, Molding apparatus.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/202,799 filed Aug. 23, 2011, which is a U.S. National Stage entry of PCT/CA2010-001799, filed 17 Nov. 2010, which claims priority from U.S. Provisional patent applications 61/264,881 and 61/264,883 both filed 30 Nov. 2009, the disclosures of which are incorporated herein by reference thereto.

TECHNICAL FIELD

The non-limiting embodiments disclosed herein generally relate to a molding apparatus, and more particularly to an in-mold shutter and a molded article transfer device for use with an injection mold, and a controller with which to execute related molding processes.

BACKGROUND

U.S. Pat. No. 7,351,050 to Vanderploeg et al., published on Apr. 1, 2008 teaches a servo side shuttle apparatus and method for a molding machine includes structure and/or steps whereby a shuttle plate is disposed adjacent at least one of a first mold half and a second mold half of the molding machine. A guidance assembly is coupled to the mold half and guides the shuttle plate linearly across a molding face of the mold half. A drive mechanism is provided to drive the shuttle plate in a linear direction. An operation structure is coupled to the shuttle plate and is configured to perform an operation on a molded article disposed either in the mold cavity or on the mold core. The operation may include removing the molded article from a mold core, applying a label to a mold cavity, and/or closing the lid of a molded article while it is resident on the mold core.

U.S. Pat. No. 5,037,597 to McGinley et al., published on Aug. 6, 1991 teaches an injection molding apparatus and process for forming a plurality of first parts and a plurality of complementary second parts during a single molding cycle has a system for removing parts molded during each cycle and for assembling the parts into finished articles. The system includes a plurality of rotatable suction cups for removing the parts and for aligning them with and inserting them into a series of loading ports in a central mold member so as to mate respective ones of the first parts with respective ones of the second parts. The central mold member further has internal chute assemblies for conveying assembled articles away from the mold. A novel system for driving the rotatable suction cups uses a rotatable member mounted to various mold halves and a camming arrangement whereby relative movement of the mold halves during the mold closing and opening motions causes rotation of the suction cups.

U.S. Pat. No. 4,589,840 to Schad, published on May 20, 1986 teaches an apparatus for continuously receiving and collecting molded articles from a continuously cycling injection molding machine where the articles are collected sequentially and continuously in a uniform physical position or orientation.

U.S. Pat. No. 6,939,504 to Homann et al., published on Sep. 6, 2005 teaches a method and system for producing hollow rib structures for trim components and panels using gas assisted injection molding. Movable insert members are provided in the mold cavity, particularly at the ends of the structural rib members. After the plastic material is injected into the mold cavity, the plastic is packed in the mold, and the insert members are locked in position. Selectively activatable locking mechanisms are used to lock up the insert members. Thereafter, gas or another fluid is introduced into the rib members in order to provide hollow channels therein. Movement of the insert members provides a recess or groove for placement of the displaced resin from the rib members. The displaced resin material completes the formation of the molded plastic article.

U.S. Pat. No. 3,982,869 to Eggers, published on Sep. 28, 1976 teaches a multiple mold assembly is disclosed for molding articles in an injection molding apparatus. The assembly includes two molding sections that are alternatively shuttled from positions wherein one of the molding sections is in position for a molding operation, and the other molding section is in position for loading of inserts, performing preparatory or finishing operations, or removal of molded articles, to the reverse positions. The shuttle assembly of this invention is particularly adapted for use in a horizontal injection molding apparatus and for insert molding.

U.S. Pat. No. 4,981,634 to Maus et al., published on Jan. 1, 1991 teaches an injection molding process creates a micro clean room environment inside a mold cavity which can stay closed to airborne contaminants while ejecting and transferring the molded part out. The molded part is formed and solidified at a parting line plane within the mold cavity, then is carried rearward on the movable mold insert to a second plane where it is stripped off and transferred out through a discharge aperture which is open when the mold cavity is in the second plane but closed off when in the first plane. The aperture faces substantially downward to prevent entry by upwelling thermal air currents. External supplied filtered gas can provide positive pressure through vents within the moldset\'s internal space. This maximizes mold and part cleanliness while speeding up “mold-open” cycle; may eliminate HEPA filters/enclosures and robots. Optical disks, lenses, food packaging and medical parts are suggested uses.

U.S. Pat. No. 4,950,152 to Brun, published on Aug. 21, 1990 teaches a plurality of injection cores are inserted by a movable platen into corresponding injection cavities defined by mold inserts within a stationary platen, and the cores extend through corresponding split transfer mold cavities. After hollow preforms with threaded neck portions are molded within the cavities, the preforms are removed from the mold cavities, separated from the injection cores, and then shifted transversely by the split transfer molds to cooling or blow cavities defined by blow cavity inserts within the stationary platen on opposite sides of the corresponding injection cavities. The transfer molds return to receive the injection cores, and corresponding blow core units are inserted into the preforms within the blow cavities for pressurizing and expanding the preforms into firm contact with the blow inserts. The preforms are removed from the blow cavities by the blow cores on alternate cycles of press operation and are then released by retraction of the blow cores. The split transfer molds are shifted transversely in opposite directions and are opened and closed by a cam system which includes cam tracks mounted on the movable platen and incorporating cam track switches.

SUMMARY

According to a first aspect described herein, there is provided a molded article transfer device for use with an injection mold. The molded article transfer device includes a shuttle that is slidably arranged, in use, within the injection mold, the shuttle defining a first aperture, at least in part, that alternately accommodates: (i) a first mold stack arranged therein; and (ii) a first molded article received therein with opening of the first mold stack to retract it from the first aperture. The first molded article is transferable, in use, within the first aperture with shuttling movement of the shuttle.

According to a second aspect described herein, there is provided an injection mold that includes a first mold half, a second mold half , a molded article transfer device, and an in-mold shutter. The first mold half includes a first mold shoe with a first stack portion of a first mold stack connected thereto. The second mold half includes a second mold shoe with a second stack portion of the first mold stack connected thereto. The in-mold shutter being configured to position, in use, the first stack portion and the second stack portion relative to each other, along a mold-stroke axis, to close and open a molding cavity that is defined therebetween for molding and ejecting, respectively, a first molded article. The molded article transfer device being configured to receive and transfer the first molded article with opening of the molding cavity.

According to a third aspect described herein, there is provided a controller including instructions being embodied in a controller-usable memory of the controller, the instructions for directing the controller to execute a molding process. The molding process includes: (i) closing a first mold stack of an injection mold to define a molding cavity therein, wherein the first mold stack is arranged within a first aperture that is defined by a shuttle of a molded article transfer device; (ii) molding a first molded article within the molding cavity; (iii) opening the first mold stack to retract it from the first aperture; (iv) arranging the first mold stack to eject the first molded article into the first aperture of the shuttle; and (v) shuttling of the shuttle to transfer the first molded article within the first aperture.

According to a fourth aspect described herein, there is provided an in-mold shutter for embedding in an injection mold. The in-mold shutter includes a shutter actuator that is configured to selectively engage a first mold shoe of an injection mold with a platen of a mold clamping assembly to hold the first mold shoe in an extended position, along a mold-stroke axis, during a step of molding a first molded article in the injection mold.

According to a fifth aspect described herein, there is provided an in-mold shutter for embedding in an injection mold. The in-mold shutter includes a shutter member that is associated, in use, with one of a platen of a mold clamping assembly and a first mold shoe of the injection mold. The in-mold shutter also includes a link member that is associated with a remaining one of the platen and the first mold shoe. The shutter member and the link member are configured to be selectively engageable, in use, to hold the first mold shoe in an extended position, along a mold-stroke axis, during a step of molding a first molded article in the injection mold.

According to a sixth aspect described herein, there is provided a controller including instructions being embodied in a controller-usable memory of the controller, the instructions for directing the controller to execute a molding process. The molding process includes: (i) closing a first mold stack of an injection mold to define a molding cavity therein; (ii) shuttering an in-mold shutter to engage a first mold shoe of the injection mold with one of a to moving platen and a stationary platen of a injection molding system; (iii) molding a first molded article within the molding cavity; (iv) un-shuttering the in-mold shutter to disengage the first mold shoe from the one of the moving platen and the stationary platen; and (v) selectively positioning the first mold shoe, along a mold-stroke axis.

These and other aspects and features will now become apparent to those skilled in the art upon review of the following description of specific non-limiting embodiments in conjunction with the accompanying drawings.

DETAILED DESCRIPTION

OF THE DRAWINGS

The detailed description of illustrative (non-limiting) embodiments will be more fully appreciated when taken in conjunction with the accompanying drawings, in which:

FIG. 1 depicts a schematic representation of an injection molding system having a non-limiting embodiment of an injection mold arranged therein;

FIG. 2A depicts a perspective view of a portion of a first mold half of the injection mold of FIG. 1 and of portions of non-limiting embodiments of a molded article transfer device and of an in-mold shutter that are associated therewith;

FIG. 2B depicts a perspective view of a portion of a second mold half of the injection mold of FIG. 1 and of a further portion of the molded article transfer device of FIG. 2A that is associated therewith;

FIG. 3 depicts another perspective view of the portion of the molded article transfer device of FIG. 2A;

FIG. 4 depicts a further perspective view of the portion of the molded article transfer device of FIG. 2A in a partially assembled state;

FIGS. 5A-5D depict a start-up molding process involving the injection mold, the molded article transfer device, and the in-mold shutter of FIG. 2A, wherein the injection mold, the molded article transfer device, and the in-mold shutter are each shown in section as taken along line A-A identified in FIGS. 2A and 2B;

FIGS. 5E-5K depict a production molding process involving the injection mold, the molded article transfer device, and the in-mold shutter of FIG. 2A;

FIGS. 6A-6G depict an alternative production molding process involving an alternative non-limiting embodiment of the injection mold, and the molded article transfer device and the in-mold shutter of FIG. 2A;

FIGS. 7A-7F depict another alternative production molding process involving the injection mold and the in-mold part transfer device of FIG. 6A, and that does not involve the in-mold shutter of FIG. 2A;

FIGS. 8A-8G depict an alternative production molding process involving an alternative non-limiting embodiment of the injection mold, an alternative non-limiting embodiment of the molded article transfer device, and the in-mold shutter of FIG. 2A;

FIG. 9 depicts a flow chart of a first aspect of the production molding process;

FIG. 10 depicts a flow chart of a second aspect of the production molding process;

FIG. 11A and 11B, 12A and 12B, and 13A and 13B depict various alternative non-limiting embodiments of an in-mold shutter in a shut position and an open position, respectively;

FIG. 14 depicts yet another alternative non-limiting embodiment of an in-mold shutter in a shut position.

The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.

DETAILED DESCRIPTION

OF THE NON-LIMITING EMBODIMENT(S)

FIG. 1 depicts a schematic representation of an injection molding system 900 with a non-limiting embodiment of an injection mold 100 arranged therein. The injection mold 100 is operable to mold a first molded article 102 (FIG. 2A) such as, for example, a container closure.

In the description of the injection molding system 900 and the injection mold 100 that follows many of the components thereof are known to persons skilled in the art, and as such these known components will not be described in detail herein. A detailed description of these known components may be referenced, at least in part, in the following reference books (for example): (i) “Injection Molding Handbook” authored by OSSWALD/TURNG/GRAMANN (ISBN: 3-446-21669-2), (ii) “Injection Molding Handbook” authored by ROSATO AND ROSATO (ISBN: 0-412-10581-3), (iii) “Injection Molding Systems” 3rd Edition authored by JOHANNABER (ISBN 3-446-17733-7) and/or (iv) “Runner and Gating Design Handbook” authored by BEAUMONT (ISBN 1-446-22672-9).

The injection molding system 900 shown in FIG. 1 is shown to include, but is not limited to, a mold clamping assembly 996 and an injection assembly 997.

By way of example, the mold clamping assembly 996 described hereafter is representative of a typical three-platen variety although no such specific limitation on the generality of the construction and/or operation thereof is intended. As such the mold clamping assembly 996 may have a different construction, such as, for example, one having only two-platens. That being said, the non-limiting embodiment of the mold clamping assembly 996 includes, amongst other things, a moving platen 912, a stationary platen 914, a clamp block 913, and a tie bar 916. The tie bar 916 links the stationary platen 914 with the clamp block 913, and moreover slidably supports the moving platen 912 thereon. While for the sake of simplicity of depiction only one tie bar 916 is shown, it is typical to provide four such tie bars 916, one extending between each of the four corners of the moving platen 912, the stationary platen 914, and the clamp block 913. The mold clamping assembly 996 also includes a platen-moving actuator 915 (such as, for example, a hydraulic actuator, a pneumatic actuator, an electro-mechanical actuator, or the like) that is connected between the moving platen 912 and the clamp block 913. The platen-moving actuator 915 is operable, in use, to move the moving platen 912 with respect to the stationary platen 914 and thus move a first mold half 96 with respect to a second mold half 98 that are mounted thereto, respectively. The mold clamping assembly 996 further includes a clamp actuator 918 and a clamp shutter 920 in association with the clamp block 913. The clamp shutter 920 is operable, in use, to selectively connect the clamp actuator 918 with the moving platen 912 for sake of a clamping together of the first mold half 96 and the second mold half 98. Lastly, the mold clamping assembly 996 may also include an ejector actuator 922 (such as, for example, a hydraulic actuator, a pneumatic actuator, an electro-mechanical actuator, or the like) that is associated with the moving platen 912. The ejector actuator 922 is connectable to a structure that is associated with the first mold half 96. The structure of the first mold half 96 is driven, in use, with actuation of the ejector actuator 922, whereby an operation is performed, such as, for example, ejecting the first molded article 102 from the first mold half 96.

By way of example, the injection assembly 997 described hereafter is representative of a typical reciprocating screw variety although no specific limitation on the generality of a construction and/or operation thereof is intended. As such the injection assembly 997 may have a different construction, such as, for example, one having separate plasticizing and injection means (i.e. so-called two stage variety). The injection assembly 997 is operable to melt and inject a molding material, such as, for example, Polyethylene or Polyethylene-terephthalate (PET) through a machine nozzle (not shown) and into a melt distribution apparatus 190 (e.g. hot runner, cold runner, insulated runner, or the like) that is associated with the second mold half 98. The melt distribution apparatus 190 in turn directs the molding material into one or more molding cavity 101 (FIG. 5A) that are defined within the injection mold 100 with the first mold half 96 and the second mold half 98 being closed and clamped together.

The first mold half 96 of the injection mold 100 is further shown as including an in-mold shutter 140, a molded article transfer device 150, and a first mold shoe 130 arranged therebetween. A detailed description of the structure and operation of the foregoing will follow. Broadly speaking, the in-mold shutter 140 is operable to selectively engage, in use, the first mold shoe 130 (FIG. 2A) of the first mold half 96 to one of the moving platen 912 and the stationary platen 914 of the mold clamping assembly 996, whereby the injection mold 100 may be opened or closed substantially without having to move the moving platen 912 relative to the stationary platen 914 (although such movement is not precluded). For its part, the first mold shoe 130 is structured to have a first stack portion 110 (FIG. 5A) of a first mold stack 106A connected thereto. Lastly, the molded article transfer device 150 is operable to transfer the first molded article 102A (FIG. 2A) that is received from the first mold stack 106A.

A detailed construction of the non-limiting embodiment of the injection mold 100 may be appreciated with further reference to FIGS. 2A, 2B, 3, and 5A. As previously mentioned, and as best shown in FIG. 5A, the first stack portion 110 of the first mold stack 106A is shown connected to the first mold shoe 130 of the first mold half 96. Also shown is a second stack portion 120 of the first mold stack 106A that is connected to a second mold shoe 131 of the second mold half 98. The first stack portion 110 and the second stack portion 120 are positioned, in use, relative to each other, along a mold-stroke axis X of the injection mold 100, to close and open a molding cavity 101 that is defined therebetween for molding and ejecting, respectively, the first molded article 102A (FIG. 2A) therein.

The first stack portion 110 of the first mold stack 106A includes an inner core 112, an outer core 114, and a stripper sleeve 116 that cooperate, in use, with a cavity insert 122 of the second stack portion 120 to define the molding cavity 101.

The outer core 114 is slidably arranged around the inner core 112 to accommodate, in use, relative movement thereof along the mold-stroke axis X, a technical effect of which may include, for example, the release of a seal portion 103 (FIG. 5D) of the first molded article 102A. Likewise, the stripper sleeve 116 is slidably arranged around the outer core 114 to accommodate, in use, the relative movement thereof along the mold-stroke axis X, a technical effect of which may include, for example, the stripping of the first molded article 102A from the outer core 114.

As previously mentioned, the foregoing members of the first stack portion 110 are connected to the first mold shoe 130. Now, in more detail, the first mold shoe 130 includes a first core retainer 132 and a stripper retainer 136 that are slidably connected together to accommodate the relative movement thereof, in use, along the mold-stroke axis X, wherein the inner core 112 is connected to the first core retainer 132, and the stripper sleeve 116 is retained with the stripper retainer 136. As such, the stripper sleeve 116 is movable, in use, along the mold-stroke axis X, relative to the inner core 112, and to the outer core 114, albeit once the outer core 114 has reached its limit of travel with respect to the inner core 112, between a stripper sleeve molding position (FIG. 5A) and an ejection position (FIG. 5D), with relative movement between the first core retainer 132 and the stripper retainer 136.

Of note, the inner core 112 is shown to be connected to the first core retainer 132 in a fluid tight manner to isolate a coolant circuit that is defined therein. The coolant channel is defined between a coolant dispenser 193 and a space that is defined within the inner core 112 within which the coolant dispenser 193 is arranged. An end portion of the coolant dispenser 193 is connected to the first core retainer 132 and is otherwise arranged to direct coolant, in use, between a coolant inlet conduit 191 and a coolant outlet conduit 194 that are defined in the first core retainer 132. In operation, a coolant, such as water, is circulated through the coolant channel to remove heat from the inner core 112, and any of the other members of the first mold stack 106A that are thermally connected therewith, whereby the first molded article 102A may be rapidly cooled to ensure a faster molding cycle.

In this arrangement, the stripper sleeve 116 is fixedly arranged in a passageway 137 that is defined in the stripper retainer 136. More particularly, the stripper retainer 136 includes a base plate 133, an intermediate plate 134, and a top plate 135 that are fastened together, in use, with the passageway 137 being defined therethrough, wherein a flange portion 123 of the stripper sleeve 116 is retained between the intermediate plate 134 and the top plate 135. The outer core 114 is slidably arranged within the passageway 137 to accommodate relative movement between the outer core 114 and the stripper sleeve 116, along the mold-stroke axis X, with the movement of the outer core 114, from an outer core molding position (FIG. 5A) to a stripping position (FIG. 5D).



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Molding apparatus patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Molding apparatus or other areas of interest.
###


Previous Patent Application:
Injection molding method
Next Patent Application:
Rotary knob assembly
Industry Class:
Plastic and nonmetallic article shaping or treating: processes
Thank you for viewing the Molding apparatus patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.75522 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3312
     SHARE
  
           


stats Patent Info
Application #
US 20140151929 A1
Publish Date
06/05/2014
Document #
14092996
File Date
11/28/2013
USPTO Class
2643281
Other USPTO Classes
International Class
29C45/40
Drawings
40


Elective
Embedding


Follow us on Twitter
twitter icon@FreshPatents