FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2014: 3 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Woven flame-resistant garment fabric, and garment made therefrom

last patentdownload pdfdownload imgimage previewnext patent


20140113122 patent thumbnailZoom

Woven flame-resistant garment fabric, and garment made therefrom


A woven flame-resistant fabric for garments, the warp and fill yarns being made up of at least about 30 wt. % inherently flame-resistant fibers. The fabric is woven from a plurality of warp yarn groups consecutively arranged across the width direction in a recurring pattern, each warp yarn group consisting of a plurality of adjacent consecutively arranged warp yarns. At least one warp yarn in each warp yarn group is woven with the fill yarns in a plain (1/1) weave and at least one warp yarn in each warp yarn group is woven in one or more non-plain weaves each selected from the group consisting of 1/2, 2/1, 2/2, 1/3, and 3/1. Approximately half of the warp yarns in the fabric are woven in a plain (1/1) weave and the remaining warp yarns in the fabric are woven in the one or more non-plain weaves, in an alternating fashion.
Related Terms: Recur Garment

Browse recent Springfield LLC patents - Rock Hill, SC, US
USPTO Applicaton #: #20140113122 - Class: 428219 (USPTO) -
Stock Material Or Miscellaneous Articles > Structurally Defined Web Or Sheet (e.g., Overall Dimension, Etc.) >Weight Per Unit Area Specified

Inventors: Ansel L. Smith, John E. Ashley, Rachel W. Boyette

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140113122, Woven flame-resistant garment fabric, and garment made therefrom.

last patentpdficondownload pdfimage previewnext patent

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/716,163 filed Oct. 19, 2012, the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates to woven flame-resistant fabrics for apparel items.

Flame-resistant fabrics (also variously referred to as “fire-resistant”, “flame-retardant”, and “fire-retardant” fabrics) are fabrics that, once ignited, tend not to sustain a flame when the source of ignition is removed. A great deal of investigation and research has been directed toward the development and improvement of flame-resistant fabrics for use in various products such as bedding, clothing, and others. Flame-resistant clothing or apparel is often worn by workers involved in activities such as industrial manufacturing and processing, fire-fighting, electrical utility work, and other endeavors that entail a significant risk of being exposed to open flame and/or electrical arcs.

Flame-resistant fabrics include both fabrics that are treated to be flame-resistant as well as flame-resistant fabrics made from inherently flame-resistant fibers. The former types of fabrics are not themselves flame-resistant, but are made flame-resistant by applying to the fabric a chemical composition that renders the fabric resistant to flame. These types of fabrics are susceptible to losing their flame-resistance when laundered repeatedly because the flame-resistant composition tends to wash out or is rendered ineffective because of chemical reactions with laundering chemicals. In contrast, inherently flame-resistant fabrics do not suffer from this drawback because they are made from fibers that are themselves flame-resistant.

Various types of inherently flame-resistant (FR) fibers have been developed, including modacrylic fibers (e.g., PROTEX® modacrylic fibers from Kaneka Corporation of Osaka, Japan), aramid fibers (e.g., NOMEX® meta-aramid fibers and KEVLAR® para-aramid fibers, both from E. I. Du Pont de Nemours and Company of Wilmington, Del.), FR rayon fibers, oxidized polyacrylonitrile fibers, and others. It is common to blend one or more types of FR staple fibers with one or more other types of non-FR staple fibers to produce a fiber blend from which yarn is spun, the yarn then being knitted or woven into fabrics for various applications. In such a fiber blend, the FR fibers can render the blend flame-resistant even though some fibers in the blend may themselves be non-FR fibers, because when the FR fibers combust they release non-combustible gases that tend to displace oxygen and thereby extinguish any flame.

In the United States, it is desirable and often required for clothing worn by certain types of workers, such as petrochemical workers, to pass standard performance specification NFPA 2112-2012 (“Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire”), Section 8.5 (Manikin Test), of the National Fire Protection Association. The NFPA standard is based on ASTM F1930, “Standard Test Method for Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin.” This standard sets various standard performance specifications for a fabric, among which are specifications for the ability of the fabric to limit the extent and severity of burns to the human body when covered in single-layer garments constructed of the fabric. The NFPA 2112 Section 8.5 test covers quantitative measurements and subjective observations that characterize the performance of single-layer garments or protective clothing ensembles mounted on a stationary instrumented manikin. The conditioned test specimen is placed on the instrumented manikin at ambient atmospheric conditions and exposed to a propane-air diffusion flame with controlled heat flux, flame distribution and duration. The average exposure heat flux is 84 kW/m2 (2 cal/s/cm2) with durations up to 20 seconds. The test procedure, data acquisition, calculation of results and preparation of parts of the test report are performed with computer hardware and software programs. Thermal energy transferred through and from the test specimen during and after the exposure is measured by thermal energy sensors. The sensors are located at the surface of the manikin. They are used to measure the thermal energy absorbed as a function of time over a preset time interval. A computer-based data acquisition system is used to store the time-varying output from the sensors. Computer software uses the stored data to calculate the heat flux and its variation with time at the surface of each sensor. The calculated heat flux and its variation with time at the surface is used to calculate the temperature within human skin and subcutaneous layers (adipose) as a function of time. The temperature history within the skin and subcutaneous layers (adipose) is used to predict the onset and severity of human skin burn injury. The computer software calculates the predicted second-degree and predicted third-degree burn injury and the total predicted burn injury resulting from the exposure. The overall percentage of predicted second-degree, predicted third-degree and predicted total burn injury is calculated by dividing the total number of sensors indicating each of these conditions by the total number of sensors on the manikin. Alternately, the overall percentages are calculated using sensor area-weighted techniques, in the case of facilities with non-uniform sensor coverage. A reporting is also made of the above conditions where the areas that are uncovered by the test specimen are excluded. This test method does not include the approximately 12% of body surface area represented by the unsensored manikin feet and hands. No corrections are applied for their exclusion. The performance of the test specimen is indicated by the calculated burn injury area and subjective observations of material response to the test exposure.

In the United States, it is desirable and often required for clothing worn by certain types of workers to pass standard performance specification F1506 of the American Society for Testing and Materials (ASTM). This standard, entitled “Standard Performance Specification for Flame Resistant Textiles Materials for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electrical Arc and Related Thermal Hazards”, sets various standard performance specifications for a fabric, among which are specifications for the ability of the fabric to self-extinguish after being ignited. When the ignition source is removed, the fabric must self-extinguish in less than 2 seconds and have less than a 6-inch char length according to ASTM Test Method D6413 (“Standard Test Method for Flame Resistance of Textiles”, also referred to as the Vertical Flame test).

The F1506 performance standard also includes standard test ASTM 1959 (“Standard Test Method for Determining the Arc Thermal Performance Value of Materials for Clothing”), which measures the level of protection that the fabric provides against electrical arc exposure. This test method measures the arc rating of materials that meet the flame-resistance requirements of less than 150 mm (6 inches) char length and less than 2 seconds afterflame when tested in accordance with ASTM D6413. The method determines the heat transport response through the fabric when exposed to heat energy from an electric arc. This heat transfer response is assessed versus the Stoll curve, which is an approximate human tissue tolerance predictive model that projects the onset of a second-degree burn injury. During the procedure, the amount of heat energy transferred by the tested material is measured, using copper slug calorimeters, during and after exposure to the electric arc. The arc rating (denoted the “ATPV”) for the material is the amount of energy that predicts a 50% probability of second-degree burn as determined by the Stoll curve, or that causes the fabric to break open, whichever occurs first.

In addition to the above-noted performance specifications of fabrics, other properties are also important if a fabric is to be practical and commercially viable, particularly for clothing. For instance, the fabric should be durable under repeated industrial launderings and should have good abrasion-resistance. Furthermore, the fabric should be readily dyeable to dark, solid shades of color, and should be comfortable to wear. The fabric should have good dimensional stability and resistance to seam slippage.

As noted above, there are various fabrics that purport to provide some degree of flame-resistance. However, the prior art known to the applicant does not disclose or suggest the specific fabric of the present invention, which has been found to possess distinct advantages and characteristics, including passage of the NFPA 2112 Section 8.5 Manikin Test. The fabric is also comfortable to wear, is abrasion-resistant, and is durable under repeated industrial launderings.

BRIEF

SUMMARY

OF THE INVENTION

More particularly, the present invention provides a woven flame-resistant fabric for garments. The fabric comprises warp yarns that extend in a longitudinal or warp direction and fill yarns that extend in a width direction of the fabric, the warp and fill yarns comprising at least about 30 wt. % inherently flame-resistant fibers. The fabric is woven from a plurality of warp yarn groups consecutively arranged across the width direction in a recurring pattern, each warp yarn group consisting of a plurality of adjacent consecutively arranged warp yarns. At least one warp yarn in each warp yarn group is woven with the fill yarns in a plain (1/1) weave and at least one warp yarn in each warp yarn group is woven with the fill yarns in one or more non-plain weaves each selected from the group consisting of 1/2, 2/1, 2/2, 1/3, and 3/1. Approximately half of the warp yarns in the fabric are woven with the fill yarns in a plain (1/1) weave and the remaining warp yarns in the fabric are woven with the fill yarns in said one or more non-plain weaves, in an alternating fashion.

A minimum content of about 30 wt. % of inherently flame-resistant fibers in the fabric is generally considered necessary in order to meet applicable standards for protection against electrical arcs, per ASTM F1959 testing.

A minimum content of about 45 wt. % of inherently flame-resistant fibers in the fabric is generally considered necessary in order to meet applicable standards for protection against flash fires, per NFPA-2112 manikin testing.

In preferred embodiments, the maximum number of adjacent plain-woven warp yarns in the fabric is 2. In some embodiments, there are no multiple adjacent plain-woven warp yarns.

The alternating plain/non-plain weave pattern has been found to be effective to increase the air permeability of the fabric relative to a plain-woven fabric that is otherwise identical (i.e., made from the same warp yarns and fill yarns and having the same basis weight), yet the performance of the fabric in the NFPA 2112 manikin test equals or exceeds that of the plain-woven version of the fabric. In one embodiment, for example, a fabric made in accordance with the invention was tested to have an air permeability approximately 22% higher than the plain-woven version of the fabric, but the NFPA-2112 manikin test result indicated a 33% body burn for the inventive fabric, versus 44% for the plain-woven version. In another embodiment, a higher-weight fabric in accordance with the invention had an air permeability approximately 80% higher than the plain-woven version, but the manikin test result indicated a 13% body burn for the inventive fabric, versus a 22% body burn for the plain-woven version. Thus, a more-breathable (and therefore more-comfortable) flame-resistant garment can be constructed from the fabric and the garment can still provide the same or superior performance in the manikin test.

In some embodiments of the invention, each warp yarn group consists of 4 warp yarns. Various weave patterns using the 4-yarn grouping are possible in accordance with the invention. In some embodiments, the warp yarn group consists of 2 plain-woven warp yarns alternating with 2 non-plain-woven warp yarns. A subset of these embodiments has the warp yarn group consisting of a plain-woven warp yarn, followed by a 1/2 woven warp yarn, followed by a plain-woven warp yarn, followed by a 2/1 woven warp yarn.

Advantageously, the fabric can have a weight of about 4 oz/yd2 to about 10 oz/yd2, or about 4 oz/yd2 to about 7.5 oz/yd2, or about 4.5 oz/yd2 to about 6 oz/yd2, depending on the application.

Fabric made in accordance with the invention has an air permeability measured in accordance with ASTM D737 that is at least about 20% greater than that of a comparable plain-woven fabric constructed from the identical warp and fill yarns and having the same weight in oz/yd2. For example, the air permeability can be about 20% to about 80% greater than that of the plain-woven version. The fabric in accordance with the invention also tends to be thicker than the plain-woven version of the fabric.

In some embodiments of the invention, the warp yarns are all identical to each other, and the fill yarns are all identical to each other. In some of those embodiments, the warp yarns are identical to the fill yarns.

In other embodiments, multiple types of warp yarns can be used, and/or multiple types of fill yarns can be used, where the “type” of yarn can refer to the material of which the yarn is made and/or the size of the yarn and/or the method of spinning used for spinning the yarn from staple fibers and/or any other physical characteristic of the yarn.

Yarns of various fiber makeups can be used for the warp and fill yarns. In preferred embodiments, the warp and fill yarns comprise about 30 wt. % to about 100 wt. % aramid fibers, more preferably about 45 wt. % to about 100 wt. % aramid fibers.

DETAILED DESCRIPTION

OF EXAMPLE EMBODIMENTS

The present inventions now will be described more fully hereinafter with reference to particular embodiments and examples of the inventions. However, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.

EXAMPLES

Samples were made of a number of fabrics having various weave constructions, including various alternating plain/non-plain weaves and “control” versions of plain-woven fabrics for comparison purposes. Most of the fabrics were made to a nominal weight of 4.5 oz/yd2, but one alternating plain/non-plain weave was made in a nominal 6 oz/yd2 weight (together with a “control” version of plain weave in that weight). All of the fabrics were woven from warp and fill yarns that were all identical to one another, spun from NOMEX® 462 staple fiber blend, which is a blend of 93 wt. % NOMEX®, 5 wt. % KEVLAR®, and 2 wt. % P140 (a static dissipative fiber). The nominal 4.5 oz/yd2 fabrics were woven from 36/2 yarns, and the nominal 6 oz/yd2 fabrics were woven from 30/2 yarns. The fabrics were dyed and finished and were then subjected to a number of tests to assess various properties of the fabrics. Physical characteristics of the various fabrics are listed in Table I below:

TABLE I Physical Characteristics of the Tested Fabrics

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Woven flame-resistant garment fabric, and garment made therefrom patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Woven flame-resistant garment fabric, and garment made therefrom or other areas of interest.
###


Previous Patent Application:
Binder for mineral and/or organic fiber mat, and products obtained
Next Patent Application:
Pregelatinized starch with mid-range viscosity, and product, slurry and methods related thereto
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Woven flame-resistant garment fabric, and garment made therefrom patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.58375 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.202
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140113122 A1
Publish Date
04/24/2014
Document #
13796896
File Date
03/12/2013
USPTO Class
428219
Other USPTO Classes
442302
International Class
/
Drawings
0


Recur
Garment


Follow us on Twitter
twitter icon@FreshPatents