FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2014: 3 views
Updated: September 07 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Smart antenna for interference rejection with enhanced tracking

last patentdownload pdfdownload imgimage previewnext patent


20140099946 patent thumbnailZoom

Smart antenna for interference rejection with enhanced tracking


A smart antenna system is provided for communicating wireless signals between a mobile device and a plurality of different fixed base stations using one or more channels and one or more beams. The smart antenna system includes a control subsystem, a radio transceiver and an antenna subsystem coupled to each other and adapted to perform scanning of one or more combinations of base stations, channels and beams using one or more test links established with one or more of the fixed base stations where the test links use at least some of the channels and the beams. A first combination of base station, channel and beam is selected based on the scanning; and a first operating link is established for transmitting a wireless signal to the selected base station using the selected channel and beam.
Related Terms: Base Station Rejection Antenna Transceiver Wireless G Link Smart Antenna

Browse recent Redline Communications Inc. patents - Markham, CA
USPTO Applicaton #: #20140099946 - Class: 455434 (USPTO) -
Telecommunications > Radiotelephone System >Zoned Or Cellular Telephone System >Control Or Access Channel Scanning

Inventors: Octavian Sarca, Serban Cretu, Aurel Picu

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140099946, Smart antenna for interference rejection with enhanced tracking.

last patentpdficondownload pdfimage previewnext patent

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. application Ser. No. 13/899,787, filed May 22, 2013, which is a continuation of Ser. No. 13/682,540, filed Nov. 20, 2012, now allowed, which is a continuation-in-part of U.S. application Ser. No. 13/644,852, filed Oct. 4, 2012, now allowed, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

This invention is directed towards antenna systems for mobile devices.

BACKGROUND OF THE INVENTION

Wireless communication is extensively used in mobile or nomadic applications.

In a typical mobile/nomadic application, a mobile or nomadic wireless device or mobile station will try to establish a link with a fixed base station, so as to transmit information to the base station. To achieve coverage of the desired area, multiple base-stations must be used. FIG. 1 shows an example of a system used to support a mobile application. Mobile station 111 will try to establish a link with one of base stations 121 and 122, as it travels along path 131.

Typical solutions for mobile or nomadic wireless devices use omnidirectional antennas that are isotropic or have similar properties, for example gain, in all directions of interest.

While mobile/nomadic devices use omnidirectional antennas, strict separation between base-stations covering adjacent areas is required to avoid harmful self-interference. Separation can be achieved through: Time, that is, the base stations do not transmit and receive at the same time, Frequency, that is, the base stations transmit and receive on different frequencies, or Code, that is, the base stations transmit and receive using different codes.

All these methods reduce the total system capacity.

FIG. 2 shows an example of the coverage 403 for base-station 401 and the coverage 404 for the base-station 402 when both base-stations use the same frequency channel, and the three mobile/nomadic devices 406, 407 and 408 use omnidirectional antennas. This assumes there are no other time or code methods used to reduce interference between the two base-stations 401 and 402. As can be seen, much of the area of interest 405 is not adequately covered. Mobile device 406 receives coverage, that is, it can establish an operating link with better than threshold signal quality from base station 401 in area 403. Similarly mobile device 407 receives coverage from base station 402 in area 404. However, mobile device 408 cannot receive coverage from either base station 401 or 402 because the signal quality is not good enough. This is because the omnidirectional antenna captures signals from the two base-stations 401 and 402 and needs to be very close to one of them and very far from the other to obtain the needed signal quality.

In order to solve the problem shown in FIG. 2, there is a need for a system that has omnidirectional coverage, but is able to focus on one sector so as to optimize signal quality to enable communications with the highest reliability. Until now, systems have focused on optimizing signal strength, which may not result in enabling communications with the highest reliability.

SUMMARY

OF THE INVENTION

In accordance with one embodiment, a smart antenna system for communicating wireless signals between a mobile device and a plurality of fixed base stations using one or more channels and one or more beams, said smart antenna system comprising a control subsystem, a radio transceiver and an antenna subsystem coupled to each other and adapted to perform scanning of one or more combinations of base stations, channels and beams using one or more test links established with one or more of the fixed base stations and the test links use at least some of the channels and the beams. A first combination of base station, channel and beam is selected based on data obtained during scanning, and a first operating link is established for transmitting a wireless signal to the currently selected base station using the currently selected channel and beam. After establishment of the first operating link, scanning is continued using one or more test links established with the currently selected base station, using one or more beams different from the currently selected beam and the currently selected channel, or with one or more combinations of base stations, channels and beams. The continued scanning is performed aperiodically, and the interval between consecutive continued scanning operations is pseudo-random.

In one implementation, before the continued scanning is performed, said control subsystem inserts a downtime and the continued scanning is performed during the downtime.

In one implementation, the control subsystem calculates the duration of the downtime before inserting the downtime.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings.

FIG. 1 shows an example of a system used to support a mobile application.

FIG. 2 shows example coverage of a given area for a mobile/nomadic device or station with an omnidirectional antenna.

FIG. 3 shows a smart antenna system.

FIG. 4 shows a radiation pattern for beam 200.

FIG. 5 shows an example radiation pattern for arrangement 300.

FIG. 6 shows a flowchart of the process when the smart antenna system 100 becomes active.

FIG. 6A shows one embodiment for determining the operating channel and the best-performing beam from a candidate set of channels and beams.

FIG. 6B is the flowchart of the process for another embodiment when the smart antenna system 100 becomes active.

FIG. 6C shows a sequence of steps for the tracking process.

FIG. 6D shows a situation where mobile device 904 uses beam 906 to connect to base station 901 to maximize signal to interference and noise ratio (SINR)

FIG. 6E shows a situation where after travelling in direction 907, mobile device 904 changes to beam 905 to connect to base station 901 to maximize signal to interference and noise ratio (SINR)

FIG. 6F shows a situation where after further travel in direction 907, mobile device 904 changes to beam 906 to maximize signal to interference and noise ratio (SINR)

FIG. 6G shows beams 915A-915E produced by mobile device 904.

FIG. 6H shows a sequence where tracking downtimes are inserted between data transmissions to allow switching between beam-channel combinations to occur.

FIG. 7 shows an illustrative example of the advantage of making selections of base station, operating channel and beam based on signal quality over signal strength.

FIG. 8 shows example coverage of a given area for a mobile/nomadic device or station with a smart antenna with the same base stations and the same area of interest as in FIG. 2.

DETAILED DESCRIPTION

OF ILLUSTRATED EMBODIMENTS

Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.

Turning now to the drawings and referring first to FIG. 3, FIG. 3 shows a smart antenna system 100 consisting of radio transceiver 101 to transmit over a wireless link; an antenna subsystem 102; and a control subsystem 103. Information can be passed between the radio transceiver 101, antenna subsystem 102 and control subsystem 103. For example, the control subsystem 103 can receive information, including, but not limited to wireless link quality information; and other information such as base station operating capacity and base station load/utilization; from either or both of the radio transceiver 101 and the antenna subsystem 102. The control subsystem 103 can process this information and command either or both of the radio transceiver 101 and antenna subsystem 102 accordingly. The smart antenna system 100 is designed to be installed in, for example, a mobile/nomadic device or station which establishes a wireless link to a base station.

The radio transceiver 101 performs several different functions, including but not limited to, for example, transmitting and receiving information on the available operating channels; obtaining data to compute signal quality measures such as signal to noise ratio (SNR), signal to interference and noise ratio (SINR) and bit error rate (BER); and computing these measures either by itself or together with the control subsystem 103. In one embodiment, the operating channel to be used for transmitting and receiving is set by the control subsystem 103. The radio transceiver can transmit on more than one channel. This allows the smart antenna system to have “background” operation. For example, while transmitting and receiving on a channel used in a current operating link in the foreground, the control subsystem 103 can direct the radio transceiver 101 to transmit and receive on other channels used in, for example, test links which have been set up in the background.

In another embodiment, in addition to the signal quality measures described above, link quality measurements can also be computed. These include, for example, packet error rate (PER), packet jitter and throughput.

The antenna subsystem 102 provides multiple beams that can be selected by the control subsystem 103. The multiple beams can be produced by independent antennas, by beam-steering or by beam-forming. These techniques are well known to one having skill in the art.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Smart antenna for interference rejection with enhanced tracking patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Smart antenna for interference rejection with enhanced tracking or other areas of interest.
###


Previous Patent Application:
Methods and arrangements for handling an identification of an available coverage in a cellular network
Next Patent Application:
Smart antenna for interference rejection with enhanced tracking
Industry Class:
Telecommunications
Thank you for viewing the Smart antenna for interference rejection with enhanced tracking patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.62298 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2815
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140099946 A1
Publish Date
04/10/2014
Document #
13970756
File Date
08/20/2013
USPTO Class
455434
Other USPTO Classes
International Class
/
Drawings
15


Base Station
Rejection
Antenna
Transceiver
Wireless
G Link
Smart Antenna


Follow us on Twitter
twitter icon@FreshPatents