FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: July 25 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Components of track-type machines having a metallurgically bonded coating

last patentdownload pdfdownload imgimage previewnext patent


20140070603 patent thumbnailZoom

Components of track-type machines having a metallurgically bonded coating


Undercarriage assembly components of track-type machines having a metallurgically bonded wear-resistant coating and methods for forming such coated undercarriage assembly components is taught herein. The bodies of the undercarriage assembly components, formed of an iron-based alloy, have a hard metal alloy slurry disposed on a surface or into an undercut or channel and then fused to form a metallurgical bond with the iron-based alloy. The wear-resistant coating comprises a fused, metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof. The portion of the outer surface of the undercarriage assembly components having the wear-resistant coating corresponds to a wear surface of the component during operation of the endless track of the track-type vehicle.
Related Terms: Cobalt Nickel Alloy Ed Coating

Browse recent Deere & Company patents - Moline, IL, US
USPTO Applicaton #: #20140070603 - Class: 305137 (USPTO) -
Wheel Substitutes For Land Vehicles > With Track Support Intermediate Of End Wheels >With Roller Support Contacting Lower Track Run >Specific Roller Structure, Per Se >Including Structure To Engage Track (e.g., Wear Surface, Cushion)

Inventors: Timothy D. Wodrich, Todd B. Niemann, Gopal S. Revankar

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140070603, Components of track-type machines having a metallurgically bonded coating.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATION DATA

The present application is a Divisional of U.S. application Ser. No. 11/171,193 filed on Jul. 1, 2005, which is a Continuation-in-Part of U.S. patent application Ser. No. 10/090,617 filed on Mar. 6, 2002, now U.S. Pat. No. 6,948,784, the entire contents of which are incorporated herein by reference.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to components of track-type machines, such as track chain bottom rollers, track chain links, track pin bushings, track pins and track pin bushing joints. In particular, it relates to undercarriage assembly components and other components of track-type machines having a wear resistant coating that is metallurgically bonded to portions of the component subject to wear, such as portions of the bottom roller, surfaces where the track chain link engages and disengages, an outside diameter surface of a track pin bushing where a drive sprocket engages and disengages the surface, an inside diameter surface of the track pin bushing, and a hinge pin bushing where two machine members are hinged together, and the outside diameter surface of the pin in the track pin bushing and the hinged pin joint.

STATE OF THE ART

In the discussion of the state of the art that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicant expressly reserves the right to demonstrate that such structures and/or methods do not qualify as prior art against the present invention.

An endless track is a chain made up of links, track pin bushings, track pins, bottom rollers and shoes. FIG. 1 shows these undercarriage assembly components in a representative section of a track on a track-type machine, i.e., a crawler tractor. Each section of the track is a pair of links fastened together with a track pin bushing at one end and a track pin at the other end. The track pin fits inside the bushing to hold the next pair of links. Both the track pin and the track pin bushing are typically “press fit” into the links so the section does not work apart during the service life of the track. One track pin on each track, the so-called master pin, is held in by a snap ring to allow removal and separation of the track, for example, when performing repairs or maintenance of the track. A track shoe, having a desired grip or grouser determined by the environment of intended use (e.g., clay, slit, loam, gravel, snow, mud, or hard surfaces) is bolted to each section to provide traction.

The undercarriage assembly components of track-type machines, such as track chain bottom rollers, track chain links, track pin bushings, track pins and track pin bushing joints in endless tracks of a track-type machine are subjected to very severe operating environments. For example, debris, soil, rocks and so forth can enter the track and undercarriage of a track-type machine, such as a crawler tractor, during operation. These materials can subsequently accumulate between the engaging surfaces of the undercarriage assembly components and engaging surfaces of the drive equipment, pack into the area between them and/or directly grind, wear, pit, scratch or crack the surface of the undercarriage assembly components. A track that is adjusted too tight can increase friction and cause accelerated wear to undercarriage assembly components, such as track pins and track pin bushings. In an extreme case, severely tight track adjustment can cause the track to run extremely hot and “draw-back” the hardness of undercarriage assembly components, such as track pins and track pin bushings, i.e., heat treat the components resulting in a reduction in the components\' hardness, and even cause the track pins and track pin bushings to fuse together. At the other end of the spectrum, a too loose track can allow drive sprocket teeth to jump links, especially in reverse, causing wear to undercarriage assembly components such as the teeth and the track pin bushings, bottom rollers, and so forth.

Undercarriage assembly components are subject to wear. For example, there are two types of wear on track pins and track pin bushings—external wear and internal wear. External wear takes place on the outer diameter of the track pin bushings in the area contacted by the drive sprocket teeth. This contact area is about ⅓ or more of the surface of the track pin bushing and occupies the majority of the center length of the track pin bushing. Wear occurs on the outside diameter of the track pin and the inside diameter of the track pin bushing. Additionally, where the track pin bushings are fitted into the track link counterbores, internal wear can occur on the outside diameter of the ends of the track pin bushings. Thus, current track pins and track pin bushings in endless tracks experience wear and stress which can negatively impact the service life of the track pin bushing.

Current track pins and track pin bushings are typically formed from materials that are hardened to decrease wear and increase service life. For example, current track pins are case hardened by carburizing the alloy and then quenching. However, these materials and methods still result in a relatively short service life. Thus, in addition to material selection for hardness and wear resistance, current track pins and track pin bushings are either turned or replaced to present a new wear surface to the sprocket and consequently extend service life. See, for example, Louis R. Hathaway, Ed., “Tires and Tracks, Fundamentals of Service”, Moline, Ill.: Deere and Company, 1986, pp. 47-67. However, the track pins and track pin bushings must be turned prior to being worn past the wear limit, or they will not be serviceable. Thus, frequent inspection and maintenance of track pins and track pin bushings occurs to identify and ameliorate components that have worn, resulting in the associated down time of equipment and personnel.

In addition, other pin/bushing (P/B) joints are widely used as hinges between two machine members in various types of machinery such as heavy equipment including tractors, construction, forestry and mining equipment. The P/B joint while serving as a hinge is also required to serve as a loaded bearing during relative motion between the two machine members connected to the joint. Such a joint, by virtue of its location on the machine and depending on the type of machine, is exposed to a dusty environment. The dust from this environment, which is mostly fine sand particles, enters into the space between the pin and the bushing and causes accelerated wear of the pin and the bushing mating surfaces and thus reduces the joint life. This then makes it necessary to replace the joint frequently even with frequent daily or weekly changing of the lubricant. The accelerated wear due to sand particles is due to the higher hardness of sand as compared to the hardness of the pin and bushing surfaces.

In conventional track/pin bushings, mating surfaces, which are the outer surface of the pin and the bore surface of the bushing, are case carburized and the parts are then quenched and tempered to obtain a high hardness on the surfaces. These high-hardness surfaces are more resistant to abrasion by fine sand particles (which travel from the outside environment into the clearance between the pin and the bushing) than if they were not carburized. This leads to a longer life of the P/B joint. However, the surface hardness obtained by this method of carburizing and quenching is only about 60-62 HRC which is much less than the hardness of the sand particles and therefore the technique provides only a limited P/B wear protection and life extension. The sand particles which enter into the clearance space between the pin and the bushing get mixed with the lubricating grease (which is injected into the clearance) and the effectiveness of the grease gradually diminishes. This makes it necessary to force out the grease from the joint clearance space frequently, sometimes daily, depending on the degree of joint seal effectiveness, and the environment in which the machine is working, to get the sand out of the joint. This frequent purging of grease helps increase the joint life to some extent. Nevertheless, this purging operation, if required to be done frequently, becomes time consuming and wasteful.

Other current undercarriage assembly components are typically formed from materials that are hardened to decrease wear and increase service life. For example, current bottom rollers are hardened by quenching. However, these materials and methods still result in a relatively short service life. The wear problem is aggravated because sand is much harder than even the hardened steel and wear of the bottom roller cannot be substantially reduced by simply hardening the contact surface. Thus, frequent inspection and maintenance of bottom rollers occurs to identify and ameliorate components that have worn, resulting in the associated down time of equipment and personnel. Similar efforts with similar limited results are known for other undercarriage assembly components.

Also, for example, undercarriage track chain links that form a part of the undercarriage assembly are subjected to severe wear and corrosion. Wear is caused by continuous contact with undercarriage rollers which themselves are hardened. The wear rate is enhanced due to abrasive action of dry sand and wet sand slurry and other hard materials such as rocks, trapped between the link and roller contact surfaces. The wear problem is further aggravated due to the fact that sand is much harder than even the hardened steel, and wear of links cannot be substantially reduced by simply hardening the contact surface. Therefore a solution other than heat treatment is required to reduce wear rate to prolong the life of the link substantially.

Also, due to the functional nature of the crawler and other construction and mining equipment, the undercarriage parts of these machines are required to be in intimate contact with wet sand and mud continuously. This causes the link surfaces to corrode thus producing a synergistic effect on wear. This corrosion cannot be reduced by hardening the steel. Any other superficial surface treatment of links such as carburizing, nitriding or other conventional surface treatment methods are not cost effective against highly wear and corrosion environment the links face during service. A more expensive material such as a highly alloyed steel or other advanced material cannot be used since such a substitution would substantially increase cost and cannot be an acceptable solution.

A solution to the problem which can reduce both wear and corrosion and also which can be applied in a production environment and at a low cost, is required.

A change in the current manufacturing process of components is proposed. The current method involves hot forging medium carbon steel containing various amounts of boron, manganese, chromium and others, machining mating surface and induction hardening select surfaces.

Coating a metal surface with another metal or metal alloy to enhance appearance, protect against corrosion, or improve resistance to wear is often referred to as “hardfacing” or “hard surfacing.” For example, see Alessi U.S. Pat. No. Re. 27,851, Revankar U.S. Pat. No. 5,027,878 and No. 5,443,916, Brady, et al., U.S. Pat. No. 4,682,987, and Hill U.S. Pat. No. 5,456,323.

Hardfacing is often done by fusing a powdered, hard metal alloy onto a metal surface. In endless track applications, metal parts subject to wear can be case hardened to improve wear resistance. However, application of current wear-resistant coatings prior to carburizing results in oxidation of the wear-resistant coating during subsequent carburizing with an adverse impact on the wear-resistant properties of the coating.

Accordingly, longer wearing surfaces on undercarriage assembly components of endless tracks used in track-type machines, such as track pin bushings, is desired to extend the service life and to reduce the long-term maintenance cost associated with endless tracks. Further, a method of producing such a longer wearing surface by coating with a wear-resistant alloy while still obtaining a desired wear resistance of the uncoated portions of the component by other suitable means, i.e., case hardening, is desirable.

Also, due to the functional nature of the heavy machinery construction, mining and forestry type equipment, the components, both the undercarriage assembly components and the hinge joint components, of these machines are required to be in intimate contact with wet sand and mud continuously during the machine operation. This causes components such as the bottom roller surfaces to corrode, thus producing a synergistic effect on wear due to abrasion. This corrosion cannot be reduced by hardening the steel. Any other superficial surface treatment of bottom rollers such as carburizing, nitriding or other conventional surface treatment methods are not cost effective or adequate against a highly wear- and corrosion-prone environment which the bottom rollers face during service. A more expensive material such as a highly alloyed steel or other advanced material, cannot be used since such a substitution would substantially increase cost without a corresponding increase in performance, and cannot be an acceptable solution.

A solution to the problem which can reduce both wear and corrosion and also which can be applied in a production environment and at a low cost is required.

U.S. Pat. No. 6,414,258 discloses a method of applying beads of hard material to sprocket teeth and bushings of a base carrier for a tracklaying vehicle. In this method, the beads are applied sequentially by weld overlays (an obviously slow process) and produce a sinusoidal type surface which is detrimental to the mating part such as the chain link. Because of the bead nature of the deposit, it takes a substantial time to generate a smoother surface by initial wear. Before this smooth wear surface is produced, the deposited contact surface can cause damage to the mating link surface.

OBJECTS AND

SUMMARY

It is an object of this invention to avoid or alleviate the problems of the prior art.

It is further an object of this invention to provide a wear-resistant coating on at least a bottom roller of an undercarriage track chain.

In one aspect of the invention, there is provided a track pin bushing for cooperating with a track pin in an endless track, the track pin bushing comprising:

a tubular body formed of an iron-based alloy with a first end and a second end, an outer surface that is case-hardened in at least a section thereof, and an inner surface having an inner diameter, wherein the inner diameter defines the circumference of an axial bore extending from the first end to the second end and at least a portion of the case hardened section has been removed to a depth sufficient to expose a non-carburized layer of the iron-based alloy; and

a wear-resistant coating metallurgically bonded to said non-carburized layer, the wear-resistant coating comprising a fused, hard metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof.

In a second embodiment, there is provided a track pin bushing for cooperating with a track pin in an endless track, the track pin bushing comprising:

a first end and a second end;

an inner surface having an inner diameter, wherein the inner diameter defines the circumference of an axial bore extending from the first end to the second end;

an outer surface having a first outer diameter at a first end section and a second end section and a second outer diameter at a middle section therebetween, wherein the second outer diameter is greater than the first outer diameter;

an annular groove located in at least a portion of said middle section and extending over a majority of an axial length of said middle section; and

a wear-resistant coating disposed in said annular groove and metallurgically bonded to the track pin bushing, the wear-resistant coating comprising a fused, hard metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof.

In a further aspect of the invention, there is provided a method for hardfacing with a wear-resistant coating a metal surface of a carburized metal part, the method comprising the steps of:

removing the carburized metal from at least a portion of the metal surface to a depth sufficient to expose a non-carburized layer of the metal, the portion defining an area to be coated;

coating the area with a slurry comprising a fusible, hard metal alloy with at least 60% iron, cobalt, nickel, or alloys thereof in the form of a finely divided powder, polyvinyl alcohol, a suspension agent and a deflocculant; and

forming a metallurgical bond between the area and the coated slurry to form the wear-resistant coating.

In a second embodiment, there is provided a method for hardfacing a metal surface of a track pin bushing with a wear-resistant coating, the track pin bushing comprising an outer surface having an outer diameter, an inner surface having an inner diameter, a first end and a second end, wherein the inner diameter defines the circumference of an axial bore extending from the first end to the second end and cooperating with a track pin in an endless track, the method comprising the steps of:

carburizing at least a portion of the track pin bushing to produce a surface having a carburized depth;

preparing at least a portion of the carburized surface of the track pin bushing in an area to be coated by removing the carburized metal to a depth sufficient to expose a noncarburized layer;

coating the exposed noncarburized layer of the track pin bushing with a slurry comprising a fusible, hard metal alloy with at least 60% iron, cobalt, nickel, or alloys thereof in the form of a finely divided powder, polyvinyl alcohol, a suspension agent and a deflocculant;

forming the wear-resistant coating by metallurgically bonding the exposed noncarburized layer and the slurry; and case hardening a non-prepared and carburized surface of the track pin bushing by quenching.

In an additional embodiment, there is provided a method for hardfacing a metal surface of a track pin bushing with a wear-resistant coating, the method comprising:

forming the track pin bushing having a first end and a second end, an inner surface having an inner diameter, wherein the inner diameter defines the circumference of an axial bore extending from the first end to the second end, an outer surface having a first outer diameter at a first end section and a second end section and a second outer diameter at a middle section therebetween, the second outer diameter being greater than the first outer diameter;

carburizing the track pin bushing to produce a carburized outer surface, inner surface and first and second end sections, each with a carburization depth;

removing carburized steel from at least a portion of said middle section to reduce the second diameter by at least the carburization depth,

coating said middle portion in the area of the reduced diameter with a slurry comprising a fusible, hard metal alloy with at least 60% iron, cobalt, nickel, or alloys thereof in the form of a finely divided powder, polyvinyl alcohol, a suspension agent and a deflocculant;

adjusting a thickness of the slurry to have an outer surface that is concentric with the axial bore, wherein the thickness of the concentric outer surface is from 1.67 to 2.0 times a final thickness of the wear-resistant coating;

forming the wear-resistant coating by metallurgically bonding said portion of said middle portion and the slurry; and

case hardening at least the inner diameter and first and second ends.

In an additional aspect of the invention, there is provided a track pin bushing in combination with a track pin for connecting adjacent track links in an endless track of a crawler track, the track pin bushing including an axial bore therethrough in which is positioned the track pin, the track pin bushing comprising:

a tubular body formed of a case hardened iron-based alloy with a first end and a second end, an outer surface, and an inner surface having an inner diameter, wherein the inner diameter defines the circumference of the axial bore extending from the first end to the second end and a portion of the outer surface has been removed to a depth sufficient to expose a non-carburized layer of the iron-based alloy; and

a wear-resistant coating metallurgically bonded to said portion, the wear-resistant coating comprising a fused, hard metal alloy comprising at least 60% iron, cobalt, nickel, or alloys thereof.

In another aspect of the invention, there is provided a pin bushing joint of an endless track of a track-type machine, the pin bushing joint comprising:



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Components of track-type machines having a metallurgically bonded coating patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Components of track-type machines having a metallurgically bonded coating or other areas of interest.
###


Previous Patent Application:
Bicycle hub assembly
Next Patent Application:
Automatic tensioning system of tracks of a paver finisher
Industry Class:
Wheel substitutes for land vehicles
Thank you for viewing the Components of track-type machines having a metallurgically bonded coating patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.64924 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

All patent applications have been filed with the United States Patent Office (USPTO) and are published as made available for research, educational and public information purposes. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not affiliated with the authors/assignees, and is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application. FreshPatents.com Terms/Support
-g2-0.2798
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140070603 A1
Publish Date
03/13/2014
Document #
14078232
File Date
11/12/2013
USPTO Class
305137
Other USPTO Classes
427287, 148529, 148526, 305202
International Class
/
Drawings
11


Cobalt
Nickel
Alloy
Ed Coating


Follow us on Twitter
twitter icon@FreshPatents