FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: August 24 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Methods, devices and formulations for targeted endobronchial therapy

last patentdownload pdfdownload imgimage previewnext patent


20140053830 patent thumbnailZoom

Methods, devices and formulations for targeted endobronchial therapy


The present invention provides an improved means of treating tracheobronchitis, bronchiectasis and pneumonia in the nosocomial patient, preferably with aerosolized anti gram-positive and anti-gram negative antibiotics administered in combination or in seriatim in reliably sufficient amounts for therapeutic effect. In one aspect, the invention assures this result when aerosol is delivered into the ventilator circuit. In one embodiment the result is achieved mechanically. In another embodiment, the result is achieved by aerosol formulation. In another aspect, the invention assures the result when aerosol is delivered directly to the airways distal of the ventilator circuit. The treatment means eliminates the dosage variability that ventilator systems engender when aerosols are introduced via the ventilator circuit. The treatment means also concentrates the therapeutic agent specifically at affected sites in the lung such that therapeutic levels of administrated drug are achieved without significant systemic exposure of the patient to the drug. The invention further provides a dose control device to govern this specialized regimen.
Related Terms: Aerosol Airway Antibiotic Bronchi Bronchiectasis Bronchitis Nosocomial Pneumonia Regimen Ventilator Antibiotics Dosage Ronchi Ventilator Circuit

Browse recent The Research Foundation Of State University Of New York patents - Albany, NY, US
USPTO Applicaton #: #20140053830 - Class: 12820014 (USPTO) -
Surgery > Liquid Medicament Atomizer Or Sprayer

Inventors: Gerald C. Smaldone, Lucy B. Palmer

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140053830, Methods, devices and formulations for targeted endobronchial therapy.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The invention relates to methods and compositions for treating tracheobronchitis, bronchiectasis and pneumonia in subjects, including the hospital patient. The present invention also relates to prevention of pulmonary infections in patients at increased risk for such infections, particularly intubated patients, through the delivery of antimicrobials to the trachea (and in some embodiments to the deep lung). In particular, the invention provides a means for treating a mechanically ventilated patient with an aerosolized antimicrobial agent without exposing such patient to significant systemic levels of the agent. Especially, the invention provides a means for administering to mechanically ventilated patients a dose of the therapeutic agent that is substantially invariant from patient-to-patient when compared to the variances typical for aerosolized agents administered via the ventilator circuit. In another aspect, the invention relates to devices that ensure the dose-control of which the invention is capable. In a preferred embodiment, the present invention contemplates the use, in combination, of aerosolized antimicrobial agents capable in combination of exerting a bactericidal or bacteriostatic effect on gram-positive and gram-negative bacteria in the lung and tracheobronchial tree to treat or prevent pulmonary infections.

BACKGROUND OF THE INVENTION

Mechanical ventilation appears to upset the normal processes that keep the lungs free of disease. Indeed, ventilator-associated pneumonia (VAP) is reported to be the most common hospital-acquired infection among patients requiring mechanical ventilation. There is a strong correlation between the duration of intubation and development of infection. In a recent large study, the mean interval between intubation and the identification of VAP was 3.3 days. Rello J. et al., “Epidemiology and Outcomes of Ventilator-Associated Pneumonia in a Large US Database” Chest 122:2115 (2002). Importantly, once VAP develops, the patient usually requires a more extended period of ventilation. Unfortunately, prolonging the intubation invites new rounds of deep infection with further decompensation of respiratory function, in a vicious cycle ending frequently in death.

It is well-known to treat such infections with systemically administered antibiotics, but simultaneous treatment of the whole body with multiple antibiotic agents is fraught with complications that range from accelerating the selection of antibiotic-resistant strains to disrupting fluid and electrolyte balance and compromising the antiviral defense mechanisms of mucosal epithelia throughout the body. Systemically administered antibiotics can also have adverse effects on the liver, kidney and skeleton. Such concerns have resulted in a recent call for a de-escalating strategy for antibiotic administration. Hoffken G. and Niederman M. S., “Nosocomial Pneumonia: The Importance of De-escalating Strategy for Antibiotic Treatment of Pneumonia in the ICU” Chest 122:2183 (2002).

Exacerbating the risks cited above is the fact that the objective of systemic therapy is to achieve high concentrations of antibiotic not in the circulation but on the mucosal side of the bronchi, i.e., in the bronchial secretions. Many antibiotics diffuse poorly from the bloodstream across the bronchi [Pennington, J. E., “Penetration of antibiotics into respiratory secretions,” Rev Infect Dis 3(1):67-73 (1981)], which leads the practitioner to administer higher doses of antibiotic than would be prescribed for a truly systemic infection. Moreover, the purulent sputum that characterizes infected patients tends to compromise the potency of many antibiotics. See e.g., Levy, J., et “Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum,” J Infect Dis 148(6):1069-76 (1983). This factor further motivates the practitioner to prescribe large amounts of antibiotic. These dangers have led some experts to propose that treating lung infections systemically in nosocomial patients should be abandoned. Unfortunately, known alternatives are not attractive either.

An alternative approach in which antibiotics are applied to the oral, gastric and endobronchial mucosa along with systemic administration has been tried. It is very costly and, in any case, is not associated with any ameliorating effect on mortality. It also invites “outbreaks” of antibiotic-resistant infections in intensive care units especially when used indiscriminately.

In another effort to overcome the aforementioned problems associated with systemic administration, various attempts have been made to administer antibiotics directly to the mucosal surface of the lungs of spontaneously breathing patients in aerosols (liquid droplets or dry powders) delivered via various nebulizers. However, more localized administration of antibiotics is controversial. Early studies with aerosolized antimicrobials did not show unambiguously positive results. This may be due, however, to a poor appreciation of the physics of aerosol administration to the intubated patient. It is now recognized that poor system designs and/or improper device usage can result in virtually no aerosol reaching the desired sites in the lungs. “Consensus Statement: Aerosols and Delivery Devices” Respiratory Care 45:589 (2000).

Moreover, even in studies with generally satisfactory results in terms of levels of antibiotic achieved or the reduction in bacterial load observed [Eisenberg, S., et al., “A comparison of peak sputum tobramycin concentration in patients with cystic fibrosis using jet and ultrasonic nebulizer systems. Aerosolized tobramycin study group,” Chest 111(4):955-962 (1997); Ramsey, B. W., et al., “Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group,” N Engl J Med 340(1):23-30 (1999)], no effort was made to reduce the amount of antibiotic administered—the nebulizers were charged with quantities of antibiotic equivalent to doses typically administered systemically.

The administration of antibiotics by nebulization in ventilated patients is reportedly even less satisfactory (Fuller, H. D., et al., Pressurized aerosol versus jet aerosol delivery to mechanically ventilated patients. Am. Rev. Respir Dis 1989, 141:440-444; MacIntyre, N., et al., Aerosol delivery to intubated, mechanically ventilated patients. Crit. Care Med 1985, 13:81-84). In ventilated patients, nebulization that bypasses the humidifier and is actuated only on the inspiration phase of the breathing cycle has been attempted using a ventilator (Bear H, Bear Medical Systems, Riverside, Calif.) of obsolete design (Palmer, et al., Crit. Care Med 1998, 26:31-39).

The extreme variability in effective dose that known methods of aerosol delivery engender is not important for conventional drugs such as bronchodilators because of the potency and safety of such agents. Variability is a crucial problem, however, in the case of antibiotics. The risk of pulmonary toxicity discourages the prescription of heroic doses to overwhelm the variability problem. That leaves the patient exposed to the prospect of inadequate treatment, a particularly risky matter. In the worst cases, by the time the insufficiency is recognized, the opportunity to correct the situation is past. In many other cases, the insufficient treatment encourages the selection and growth of antibiotic-resistant organisms in the patient, which totally disarms the practitioner and exposes entire cohorts of patients to danger.

What is needed in the art to encourage the abandonment of systemic antibiotic therapy to treat lung infections in the nosocomial patient is a means of delivering antibiotics directly into the distal airways of the lung. Such means should produce reliably high titers of antibiotics in the bronchial secretions in a short period of time so as to overwhelm all infectious organisms before selection processes can even begin to establish a population of resistant organisms. On the other hand, the invention should provide a reliable means of dose control to avoid “spillover” into the systemic circulation, pulmonary toxicity, and inadvertent exposure of medical personnel and other patients to escaped antibiotics.

SUMMARY

OF THE INVENTION

These and other objects are furnished by the present invention which provides a method for treating or preventing pulmonary infections, including nosocomial infections, in animals, including, especially, humans. The method generally comprises administering to an animal subject or human patient in need thereof, as an aerosol, a therapeutically effective amount of an antibiotic substance or a pharmaceutically acceptable salt thereof. Several antibiotics may be delivered in combination according to the invention, or in seriatim. Preferably, the amounts delivered to the airways, if delivered systemically in such amounts, would not be sufficient to be therapeutically effective and would certainly not be enough to induce toxicity. At the same time, such amounts will result in sputum levels of antibiotic of more than about 10-100 times the minimum inhibitory concentration (“MIC”).

In one aspect, the therapeutically effective amount reaches the airways by means of a nebulizer positioned to direct its aerosol into the ventilator circuit. A variety of nebulizers suitable for creating aerosols as liquid droplets or dry particles are useful in the invention. In fact, any means of aerosol delivery that tends to minimize trapping of aerosol particles on the inner walls of the ventilator circuit is within the scope of the invention. In one embodiment, this object is achieved by insuring that the aerosolized particles are prevented from undergoing significant hygroscopic enlargement, since particles enrobed in water will tend to condense on the walls. In one embodiment, the step is introduced of reducing humidity in the ventilator circuit by a predetermined amount before nebulization begins. In this embodiment, according to the invention, a humidity that maintains mass median aerodynamic diameter (“MMAD”) at less than about 3 μm as predetermined in a standard bench-test model is preferred, and an MMAD less than about 1.5 μm is more preferred. In another embodiment, each aerosol particle is delivered enrobed in a substantially anhygroscopic envelope.

Of course, embodiments can be used where diameters are greater. Moreover, in some cases, the present invention contemplates adjustments to the surface electrical charges on the particles or the walls. For example, assuming surface charge on the device is important, the present invention contemplates embodiments wherein the connectors are made, or the Y piece (discussed below) is made, of metal (or at least coated with metal). Alternatively, the plastic connectors and/or Y piece can be treated with agents (e.g. wetting agents, detergents, soaps) to adjust surface charge.

In another aspect of the invention, aerosolized antibiotic is delivered directly to the airways of the animal subject or human patient, largely by-passing the ventilator circuit. A particularly convenient means for delivering aerosolized antibiotic according to the invention is described in U.S. Pat. Nos. 5,642,730, 5,964,223 and 6,079,413, hereby incorporated by reference. Since the treatment strategy in which the instant invention is useful benefits from placement of a specialized suction catheter in the patient\'s airway as described below, one embodiment of this aspect of the instant invention is a combination aerosol and suction catheter.

Any such delivery device is within the scope of the invention if it is capable of delivering a predictable amount of a therapeutic agent within the ranges contemplated in the invention. Preferably, this requirement is achieved with a device for containing the prescribed amount of therapeutic agent, which device is another aspect of the invention. Such device, according to the invention, is sized to accommodate that specific quantity of antibiotic which, in a predetermined delivery period, will result in the delivery of a predetermined amount of antibiotic. Such device is designed to operatively fit an aerosol delivery device that is within the scope of the invention.

In one embodiment, the present invention contemplates a device comprising a fluid driving element attached to a dose metering element, said dose metering element engaged to an aerosolizing catheter. In a preferred embodiment, the dose metering element is detachably engaged to said aerosolizing catheter and comprises a reservoir of defined volume, said reservoir being preferably configured as a transparent or semi-transparent cylinder or tube, with or without visible measurement indicia. In this preferred embodiment, the fluid formulation (e.g. antibiotic formulation) for the patient is placed in the reservoir, the fluid driving element being disposed in relation to the reservoir such that, in operation, the fluid driving element urges the fluid formulation ouf ot eh reservoir and into the aerosolization device. In a preferred embodiment, the fluid driving element comprises a plunger or piston driven by compressed gas, said compressed gas stored in a container or canister and released by the operator of the device. When the release of compressed gas is triggered, the plunger or piston pushes the defined volume of the formulation into the aerosolizing catheter. In a particularly preferred embodiment, the device is a “stand alone” device configured such that it can engage an opening or port in a ventilation system, wherein said aerosolizing catheter is dimensioned to fit inside (or along side) an endotracheal tube (and/or tracheostomy tube) of an intubated patient, such that the delivery end (i.e. out of which the aerosol is delivered) of the catheter extends approximately to the end of the tube (or preferably below the end of the tube, thereby delivering aerosol in a manner that bypasses the tube). In a particularly preferred embodiment, the end of the aerosolizing catheter comprises a baffle to slow the speed of the aerosol.

In a preferred embodiment, the drug or drugs in the formulation are antimicrobials (i.e. antifungals, antivirals, and/or antibacterials). In a particularly preferred embodiment, the present invention contemplates a formulation comprising an anti-gram positive antibiotic substance together with an anti-gram-negative antibiotic substance, or pharmaceutically acceptable salts thereof, in an aerosolizing device. In one embodiment, the method comprises: a) providing: i) a patient (whether human or animal) exhibiting one or more symptoms of infection (or simply a patient at risk for infections); ii) a formulation (typically a liquid, dry powder or lipid formulation) comprising a first antibiotic having activity against gram positive bacteria and a second antibiotic having activity against gram negative bacteria; iii) an aerosol delivery device comprising an upper end and a lower end, said lower end comprising an aerosol delivery end configured to fit within said patient\'s trachea (or within the endotracheal or tracheostomy tube); b) inserting said aerosol delivery end of said device within said patient\'s trachea to create a positioned device; and c) aerosolizing said formulation under conditions such that said formulation is delivered through said aerosol delivery end of said positioned device to said patient, wherein said aerosol first contacts said patient at said patient\'s trachea (thereby bypassing the oro-pharynx). It is not intended that the above-mentioned embodiment of the present invention be limited by the delivery device. In one embodiment, said aerosol delivery device comprises an aerosol delivery catheter. In another embodiment, said aerosol delivery device comprises a bronchoscope fitted with an aerosolizing nozzle. In yet another embodiment, said aerosol delivery device comprises a metered dose inhaler fitted with a nozzle extension.

The embodiment of the method of administering a mixture of antibiotics is particularly appropriate for intubated patients. To that end, the present invention contemplates an embodiment of the method, comprising: a) providing: i) a patient (whether human or animal) exhibiting one or more symptoms of microbial infection (or simply a patient who—because of the intubation, or length of time intubated—is at risk for infection), said patient being intubated with a tube selected from endotracheal tubes and tracheostomy tubes, said tube having a lower end and an upper end; ii) a formulation (typically a liquid, dry powder or lipid formulation) comprising a first antibiotic having activity against gram positive bacteria and a second antibiotic having activity against gram negative bacteria; iii) an aerosol delivery catheter comprising an upper end and a lower end, said lower end comprising an aerosol delivery end configured to fit within said tube; b) inserting said aerosol delivery end of said catheter within said tube to create a positioned catheter; and c) aerosolizing said formulation under conditions such that said formulation is delivered through said positioned catheter to said patient. In a preferred embodiment, said tube is connected to a mechanical ventilator. In a particularly preferred embodiment, said aerosol delivery end of said positioned catheter extends to i) just before (e.g. within an inch), ii) at or iii) just below (e.g. within an inch) said lower end of said tube (thereby bypassing potential blockages caused by the ventilation tubing). However, in one embodiment, said aerosol delivery end of said positioned catheter is well within the endotracheal tube (positioned in the upper one third or middle one third of the endotracheal tube) such that said aerosol first contacts the endotracheal tube and thereafter contacts the patient\'s trachea.

In one embodiment, particular with respect to “constant-flow” ventilators, the present invention contemplates limiting the delivery event strictly to the inspiratory phase of the ventilator cycle and, if possible, at a reduced flow-rate. Thus, in one embodiment, said aerosolizing of step (c) is actuated on (or in fixed realtion to) the inspiration phase of the breathing cycle. In one embodiment, a mechanical ventilator controls a breathing cycle for the patient, said cycle comprising an inspiration phase of the breathing cycle.

In another embodiment, delivery is through the catheter is “continuous” and not limited to the inspiratory phase. In one embodiment, a vancomycin/gentamycin formulation is delivered continuously via an aerosol catheter (such as the Trudell catheter).

It is not intended that the present invention be limited to particular dosages. On the other hand, the efficiency of the aerosol systems and methods described herein permit amounts to be delivered that are too low to be generally effective if administered systemically, but are nonetheless effective amounts when administered in a suitable and pharmaceutically acceptable formulation directly to the airway. Importantly, while efficiencies can be increased, in preferred embodiments efficiencies are not increased at the expense of control over the dose. Thus, lower efficiencies are contemplated as preferred when delivery is more reproducible.

It is not intended that the present invention be limited to antimicrobials that only kill particular organisms. The present invention contemplates drugs and drug combinations that will address a wide variety of organisms. In a preferred embodiment, the present invention contemplates drugs or drug combinations effective in the treatment of infections caused by P. aeruginosa, S. aureus, H. influenza, and S. pneumoniae and/or antibiotic-resistant strains of bacteria such as methicillin-resistant S. aureus, among others.

Of course, antivirals can also be aerosolized and administered in the manner of the antibiotic formulations of the present invention. This is particularly significant given the outbreak of severe acute respiratory syndrome (SARS) in Hong Kong. The symptoms of SARS include fever, chills, myalgia and cough. People of older age, people with lymphopenia, and people with liver dysfunction typically are associated with severe disease. It is believed that the infectious agent is a virus belonging to the family Coronaviridae.

While preferred embodiments of the present invention address infections, the present invention contemplates that the improved aerosol systems and methods can be applied to any patient, human or animal, in need of an aerosol to the trachea and/or deep lung. For this reason, other drugs (e.g. steroids, proteins, peptides, nucleic acids, bronchodilator, surfactant, lidocaine . . . ) are contemplated as aerosols. Moreover other types of patients (e.g. cystic fibrosis, lung cancer, COPH, ARDS, SAID, Heaves, respiratory infections, asthma, bronchospasm) are contemplated.

Moreover, while preferred embodiments of the present invention are presented in the context of the intubated patient, other patients at risk for infection are contemplated as treatable with the methods and devices of the present invention. For example, the elderly (particularly those in nursing homes), horses, dogs and cats in competitions (show and racing animals), animals that frequently travel (e.g. circus animals), animals in close quarters (e.g. zoos or farms), humans and animals in general are at risk for lung infections. The present invention contemplates delivery of aerosols to the trachea and/or deep lung for such individuals—both prophylactically (i.e. before symptoms) and under acute conditions (i.e. after symptoms)—wherein said aerosols comprise antimicrobials, and in particular, the antibiotic mixtures described above.

In one embodiment, the present invention contemplates administering the appropriate medication to a patient diagnosed with ARDS or chronic obstructive pulmonary disease (COPD). This invention contemplates an embodiment of a method, comprising: a) providing: i) a patient (whether human or animal) exhibiting one or more symptoms of ARDS (or simply a patient who, because of prior diagnosis with chronic or acute conditions of AIDS, tuberculosis, flu, emphysema, cystic fibrosis, heaves, is either currently infected or at risk for infection, or who exhibits increases in mucus or sputum), ii) a formulation of the appropriate medication, and iii) an aerosol delivery catheter comprising an upper end and a lower end, said lower end comprising an aerosol delivery end; b) inserting said aerosol delivery end of said catheter into said patient\'s trachea to create a positioned catheter (if the patient has an intubation tube the catheter is configured to fit inside or along side said tube); and c) aerosolizing said formulation under conditions such that said formulation is delivered through said positioned catheter to said patient.

The present invention is not limited to any precise desired outcome when using the above-described compositions, devices and methods. However, it is believed that the compositions, devices and methods of the present invention may result in a reduction in mortality rates of intubated patients, a decrease in the incidence of resistance (or at least no increase in resistance) because of the reduced systemic antibiotic exposure and elevated exposure at the targeted mucosal surface of the lung caused by local administration. As noted above, it is contemplated that the compositions, devices and methods of the present invention are useful in the treatment of pneumonia (and may be more effective than systemic treatment—or at the very least, a useful adjunct). It is believed that related infections may also be prevented or reduced (e.g. prevention of sepsis, suppression of urinary tract infections, etc.)

Of course, a reduced use of systemic antibiotics because of the efficacy of the compositions, devices and methods of the present invention may result in reduced cost, reduced time on IV lines, and/or reduced time on central lines). Moreover, such a reduction should reduce antibiotic toxicity (as measured by reduced incidence of diarrhea and C. difficile infection, better nutrition, etc.)

It is believed that the compositions, devices and methods of the present invention will locally result in a reduction of the ET/Trach tube biofilm. This should, in turn, get rid of secretions, decrease airway resistance, and/or decrease the work of breathing. The latter should ease the process of weaning the patient off of the ventilator

The present invention contemplates specific embodiments that can replace commonly used elements of a ventilator system. In one embodiment, the present invention contemplates a modular Y piece attachable to a ventilator and to an endotracheal tube, wherein the lower arm of the Y piece comprises an aerosol generator. While not limited to any precise desired outcome, it is contemplated that the modular Y piece with integral generator will reduce the effects of the ventilator on all conventional aerosol systems (jet, ultrasonic and MDI), and at the same time enhance the positive qualities of a device like the Aerogen™ pro. Again, While not limited to any precise desired outcome, it is contemplated that the modular Y piece with integral generator will: (1) reduce variability in delivery (reduced effects of humidification, bias flow, continuous vs breath-actuated) so as to achieve the same delivery (no matter what commercial ventilator system is used); (2) allow for maximal effects of breath actuation; and (3) allow for maximal effect to enhanced nebulizer efficiency using nebulizers having no dead volume.

In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a patient, said patient intubated with a tube selected from endotracheal tubes and tracheostomy tubes (whether or not said patient is exhibiting signs of infection), said tube having a lower end and an upper end; ii) a formulation comprising a first antibiotic; iii) a aerosol delivery device comprising an upper end and a lower end, said lower end comprising an aerosol delivery end configured to fit within said patient\'s trachea; b) inserting said aerosol delivery end of said device within said patient\'s trachea to create a positioned device; and c) aerosolizing said formulation under conditions such that said formulation is delivered through said aerosol delivery end of said positioned device to said patient, wherein said aerosol first contacts said trachea. In one embodiment, said aerosol delivery device comprises an aerosol delivery catheter. In another embodiment, said aerosol delivery device comprises a bronchoscope fitted with an aerosolizing nozzle. In yet another embodiment, said aerosol delivery device comprises a metered dose inhaler fitted with a nozzle extension.

While the present invention is not limited to the nature of the formulation, in one embodiment, said formulation further comprises a second antibiotic, wherein said first antibiotic has activity against gram positive bacteria and said second antibiotic has activity against gram negative bacteria. In yet another embodiment, the formulation further comprises a bronchodilator (e.g. albuterol).

In one embodiment, the present invention contemplates a method, comprising: a) providing: i) an intubated patient exhibiting one or more symptoms of microbial infection, ii) a formulation comprising a first antibiotic having activity against gram positive bacteria and a second antibiotic having activity against gram negative bacteria; iii) a aerosol delivery catheter comprising an upper end and a lower end, said lower end comprising an aerosol delivery end configured to fit within said tube; b) inserting said aerosol delivery end of said catheter within said tube to create a positioned catheter; and c) aerosolizing said formulation under conditions such that said formulation is delivered through said positioned catheter to said patient. Over time, it is contemplated that such administration will reduce (but need not eliminate completely) one or more of said symptoms. For example, such administration may reduce the CPIS score (discussed in more detail below) or may reduce one or more factors used to calculate the CPIS score. On the other hand, such administration may reduce the amount of secretions (e.g. sputum) in a defined time period.

While the present invention is not limited to any precise configuration, it is contemplated that the above-described method is performed in the context where said tube is connected to a mechanical ventilator. While the present invention is not limited to the precising timing of delivery, in one embodiment said mechanical ventilator controls a breathing cycle, said cycle comprising an inspiration phase of the breathing cycle and said aerosolizing of step (c) is actuated on the inspiration phase of the breathing cycle.

The present invention is not limited to any precise positioning of the catheter, In one embodiment, said aerosol delivery end of said positioned catheter extends i) just before (e.g. within 3 cm), ii) at, or iii) just below (e.g. with 3 cm) of said lower end of said tube. However, in one embodiment, said aerosol delivery end of said positioned catheter is well within the endotracheal tube (positioned in the upper one third or middle one third of the endotracheal tube) such that said aerosol first contacts the endotracheal tube and thereafter contacts the patient\'s trachea.

In yet another embodiment, the present invention contemplates a method, comprising: a) providing: i) a patient exhibiting an elevated white blood cell count (and/or an elevated CPIS score); ii) a formulation comprising a first antibiotic having activity against gram positive bacteria and (optionally) a second antibiotic having activity against gram negative bacteria; iii) a aerosol delivery device comprising an upper end and a lower end, said lower end comprising an aerosol delivery end configured to fit within said patient\'s trachea; b) inserting said aerosol delivery end of said device within said patient\'s trachea to create a positioned device; and c) aerosolizing said formulation under conditions such that said formulation is delivered through said aerosol delivery end of said positioned device to said patient to create a treated patient, wherein said aerosol first contacts said trachea. Over time, it is contemplated that such administration will reduce the white blood cell count (in some cases to a number in the normal range). Therefore, in one embodiment, the method further comprises d) measuring the white blood cell count of said treated patient after step (c).

However, white blood cell count is only one of a number of indicators. By way of example, such administration may reduce the CPIS score [e.g. from 6 (or >6) to 4 or less] or may reduce one or more factors used to calculate the CPIS score. On the other hand, such administration may reduce the amount of secretions (e.g. sputum) in a defined time period.

Again, while the present invention is not limited to any precise configuration, it is contemplated that the above-described method is performed in the context where said tube is connected to a mechanical ventilator. While the present invention is not limited to the precising timing of delivery, in one embodiment said mechanical ventilator controls a breathing cycle, said cycle comprising an inspiration phase of the breathing cycle and said aerosolizing of step (c) is actuated on the inspiration phase of the breathing cycle.

Again, the present invention is not limited to any precise positioning of the catheter, In one embodiment, said aerosol delivery end of said positioned catheter extends i) just before (e.g. within 3 cm), ii) at, or iii) just below (e.g. with 3 cm) of said lower end of said tube.

The present invention also contemplates devices and formulations (independent of how they are used). While the present invention is not limited to the nature of the formulation, in one embodiment, said formulation further comprises a first antibiotic with activity against gram positive bacteria and a second antibiotic with activity against gram negative bacteria. In yet another embodiment, the formulation further comprises a bronchodilator (e.g. albuterol). In one embodiment, a single antibiotic is used together with a bronchodilator. It has been found that this combination is useful due to the observation (in some cases) of a post-antibiotic bronchospasm when antibiotic is used alone.

In one embodiment, the present invention contemplates a device, comprising a fluid driving element attached to a dose metering element, said dose metering element engaged (directly or indirectly through other elements) to an aerosolizing catheter, said catheter comprising an aerosol delivery end. In a preferred embodiment, said dose metering element is detachably engaged (e.g. screw mounted, snap mounted, slide mounted and held by virtue of the fact that the tubing slides over or slides within other tubing) to said aerosolizing catheter. In one embodiment, said dose metering element comprises a reservoir of defined volume. In one embodiment, said reservoir is loaded with a drug formulation (e.g. an antibiotic formulation). In one embodiment, said reservoir is configured as a transparent or semi-transparent cylinder. In one embodiment, said cylinder comprises visible measurement indicia. In one embodiment, said fluid driving element comprises a plunger driven by compressed gas, said compressed gas stored in a canister. In one embodiment, said aerosolizing catheter is of such dimensions such that it can to fit inside an endotracheal tube. In one embodiment, said delivery end of said aerosolizing catheter comprises a baffle.

In one embodiment, the present invention also contemplates a device comprising tubing configured approximately as a Y piece, said device having a first end attachable to a ventilator and a second end attachable to an endotracheal tube, wherein said second end comprises an aerosol generator. In one embodiment, said aerosol generator is integral to said second end (e.g. attached at the time of molding the piece). In one embodiment, said aerosol generator is drug-loaded.

In another embodiment, the present invention contemplates a system comprising a ventilator circuit, said circuit comprising i) an inspiratory line and an expiratory line converging at a junction, ii) a nebulizer positioned in proximity to said junction and in fluid communication with an endotracheal tube (or tracheostomy tube), wherein said nebulizer is not positioned in said inspiratory line or said expiratory line. The nebulizer is positioned “in proximity” to said junction when it is placed between said junction and said endotracheal tube (and optionally, it can be placed so that it is closer to said junction than it is to said endotracheal tube).

It is not intended that the present invention be limited to the precise configuration of the junction. In one embodiment, said junction comprises a Y piece (or “T” piece, or “V” piece) having a first end, a second end, and a stem (the “V” piece stem is just the bottom point of the “V”). It is preferred in this embodiment that said inspiratory line is attached to said first end of said Y piece, and wherein and said expiratory line is attached to said second end of said Y piece. In one embodiment, said nebulizer is positioned in said stem of said Y piece. In one embodiment, said nebulizer is simply attached to said stem of said Y piece. In a preferred embodiment, a nebulizer adapter is inserted between the Y piece and the endotracheal tube such that said nebulizer can be positioned (i.e. the nebulizer fits into the adapter in a male-female manner, as a snap fit, etc). In yet another embodiment, said nebulizer is integral to said stem of said Y piece.

The present invention is not limited to the precise configuration or nature of the circuit. In one embodiment, said circuit is a closed, circuit. In another embodiment, said circuit is an open circuit.

The present invention also contemplates an embodiment of a device comprising tubing configured approximately as a Y piece (or “T” piece, or “V” piece), said device comprising i) a first end attachable to an inspiratory line of a ventilator circuit, ii) a second end attachable to an expiratory line of a ventilator circuit, and iii) a stem comprising an nebulizer. In one embodiment, said nebulizer is positioned in said stem of said Y piece. In one embodiment, said nebulizer is simply directly or indirectly (e.g. via another tube or suitable element) attached to said stem of said Y piece. In a preferred embodiment, a nebulizer adapter is inserted between the Y piece and the endotracheal tube such that said nebulizer can be positioned (i.e. the nebulizer fits into the adapter in a male-female manner, as a snap fit, etc). In yet another embodiment, said nebulizer is integral to said stem of said Y piece. The nebulizer can either be empty (loaded later) or drug-loaded (provided to the end user in a loaded form).

While not limited to how the above devices are used, in one embodiment the present invention contemplates a method comprising a) providing a subject attached to a ventilator circuit via a tube selected from an endotracheal tube and a tracheostomy tube, said ventilator circuit comprising i) an inspiratory line and an expiratory line converging at a junction, ii) a nebulizer positioned in proximity to said junction and in fluid communication with said tube, wherein said nebulizer is not positioned in said inspiratory line or said expiratory line; b) administering aerosolized antibiotic to said subject via said nebulizer. The subject might be a human or animal. In one embodiment, said subject is a patient exhibiting one or more symptoms of infection. In one embodiment, said nebulizer, prior to step (b) contains an antibiotic formulation. In one embodiment, said antibiotic formulation comprises a first antibiotic having activity against gram positive bacteria and a second antibiotic having activity against gram negative bacteria.

In another embodiment, the present invention contemplates a method, comprising a) providing a patient exhibiting one or more symptoms of microbial infection, said patient intubated with a tube selected from endotracheal tubes and tracheostomy tubes, said tube connected to a ventilator circuit comprising i) an inspiratory line and an expiratory line converging at a junction, ii) a nebulizer positioned in proximity to said junction and in fluid communication with said tube, wherein said nebulizer is not positioned in said inspiratory line or said expiratory line, and wherein said nebulizer contains a formulation comprising two or more antibiotics; b) administering said formulation as an aerosol to said patient via said nebulizer. While not limited to the precise formulation, in one embodiment said formulation comprises a first antibiotic having activity against gram positive bacteria and a second antibiotic having activity against gram negative bacteria.

Again, the present invention is not limited to particular vent configurations. In one embodiment, said inspiratory and said expiratory lines are connected to a mechanical ventilator. In one embodiment, said mechanical ventilator controls a breathing cycle, said cycle comprising an inspiration phase. In one embodiment, said administering of said aerosol of step (b) is actuated on the inspiration phase of the breathing cycle.

Again, the present invention is not limited to particular vent features or modes of operation. In one embodiment, said mechanical ventilator comprises a humidifying element. In one embodiment, said administering of said aerosol of step (b) is actuated when said humidifying element is not active.

DESCRIPTION OF THE DRAWINGS

FIG. 1A is a diagram of a conventional endotracheal intubation. FIG. 1B is a magnified view of the circled area of FIG. 1A



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Methods, devices and formulations for targeted endobronchial therapy patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Methods, devices and formulations for targeted endobronchial therapy or other areas of interest.
###


Previous Patent Application:
Method of and system for producing oil and valuable byproducts from grains in dry milling systems with a back-end dewater milling unit
Next Patent Application:
Ventilator aerosol delivery system
Industry Class:
Surgery
Thank you for viewing the Methods, devices and formulations for targeted endobronchial therapy patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.50188 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.0152
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140053830 A1
Publish Date
02/27/2014
Document #
13967639
File Date
08/15/2013
USPTO Class
12820014
Other USPTO Classes
International Class
61M15/00
Drawings
22


Aerosol
Airway
Antibiotic
Bronchi
Bronchiectasis
Bronchitis
Nosocomial
Pneumonia
Regimen
Ventilator
Antibiotics
Dosage
Ronchi
Ventilator Circuit


Follow us on Twitter
twitter icon@FreshPatents