FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 21 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Precast wall panels and method of erecting a high-rise building using the panels

last patentdownload pdfdownload imgimage previewnext patent


20140047786 patent thumbnailZoom

Precast wall panels and method of erecting a high-rise building using the panels


Precast wall systems and methods for constructing a high-rise building using the precast wall system is disclosed. In one embodiment, the system includes a plurality of interconnected precast panels, each having a top end plate, a bottom end plate, a plurality of vertical bars disposed between the end plates and a cementitious material encasing the vertical bars and defining a plurality of sides of the respective panel. A first of the precast panels has a first column member half defining a right side of the first panel, a second of the precast panels has a second column member half defining a left side of the second panel such that, when the right side of the first precast panel and the left side of the second precast panel are disposed horizontally adjacent to each other, the first column member half and the second column member half collectively form a column member.

USPTO Applicaton #: #20140047786 - Class: 52250 (USPTO) -


Inventors: Juan Carrion, William F. Baker, John A. Cavanagh, Robert C. Stewart, James C. Macdonald, Charles Besjak

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140047786, Precast wall panels and method of erecting a high-rise building using the panels.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part and claims the benefit of the filing date of U.S. patent application Ser. No. 12/356,414, entitled “Precast Wall Panels And Method Of Erecting A High-Rise Building Using The Panels,” filed on Jan. 20, 2009, which is incorporated herein by reference to the extent permitted by law.

BACKGROUND OF THE INVENTION

The present invention relates to static building structures, and more particularly, to precast wall panels that may be interconnected to form a core or perimeter wall system for erecting or constructing a high-rise building or other walled structure.

High-rise buildings typically are constructed to have six or more floors or stories above ground level. The design of a high-rise building is usually governed by wind effects. One of the most efficient structural systems to resist wind loads for a high-rise building is an interior or core wall system. Conventional core wall systems for high-rise buildings are typically constructed from concrete (cast-in-place over rebar cages for reinforcement) for each story of the high-rise building. In certain markets, conventional core wall systems incorporate structural steel columns and floor beams erected prior to the construction of the cast-in-place core walls. In these conventional core wall systems, concrete is cast in place over the structural steel columns and floor beams. A concrete core wall system provides a number of benefits compared to a structural steel system. Concrete core walls have higher structural damping than structural steel systems, therefore reducing the amount of sway and drift due to wind loads. Concrete core walls provide increased safety and security for fire stairs, standpipes, and communications systems. Because of these reasons, following the events of Sep. 11, 2001, there has been even more emphasis on the use of concrete core walls systems for erecting or constructing high-rise buildings.

As previously noted, conventional concrete core systems used to erect a high-rise building have been constructed using cast-in-place reinforced concrete, including concrete cast-in-place over a previously erected steel structure. The disadvantages of cast-in-place concrete cores versus structural steel core frames is the labor intensity, extended construction schedule, miss-located embedded plates, and shrinkage and creep effects. Moreover, construction workers often cannot work on a floor or story of a high-rise building while concrete contractors are working on a story above the construction workers due to the risk of falling concrete. Thus, using cast-in-place concrete core wall systems to construct or erect a high-rise building often increases the time required to erect the building and adds costs if other construction workers are idled while the concrete contractors work to form the cast-in-place concrete core wall systems.

Conventional precast modular components (such as those described in U.S. Pat. Nos. 3,952,471; 4,142,340; 6,076,319; 6,301,851; 6,457,281 and 6,493,996) have been used to construct volumetric enclosures such as low rise building structures, rooms, basements, cisterns, factories, retaining walls, and flood control dykes. However, these conventional precast components are not suitable for constructing or erecting a high-rise building. In particular, these conventional precast components, and structures built from such components, lack sufficient strength to resist and transfer wind and gravity loads as present in core wall systems of a high-rise building.

There is therefore a need for precast wall panels and a method of constructing a precast wall system that overcomes the problems noted above and enables the erection of core walls for a high-rise building.

SUMMARY

OF THE INVENTION

Systems and methods consistent with the present invention provide precast wall panels that may be interconnected to form a core or perimeter wall system for erecting or constructing a high-rise building or other walled structure. Precast core or perimeter wall systems (hereinafter a “precast wall system”) consistent with the present invention offer an attractive alternative to cast-in-place concrete core systems. Precast wall panels as described herein may be prepared (using concrete or other cementitious material) in advance under controlled conditions providing improved quality control and an opportunity for pre-inspection, verification and correction, if necessary, before being shipped to the construction site, therefore resulting in superior quality products. The precast wall panels also allow construction of a high-rise building even under difficult weather conditions. Furthermore, the construction speed possible with precast wall systems consistent with the present invention reduces construction schedule, minimizes on-site labor costs, and provides significant economy to the high-rise building project.

In accordance with systems consistent with the present invention, a precast wall system is provided. The precast wall system comprises a plurality of interconnected precast panels. Each precast panel has a top end plate, a bottom end plate, a plurality of vertical bars disposed between and attached to the end plates (to effectively function as one means to transfer vertical loads), and a cementitious material (such as concrete) encasing the vertical bars and defining a plurality of sides of the respective panel. In one implementation, a second plurality of the interconnected precast panels are arranged on and vertically adjacent to a first plurality of the interconnected precast panels and the top end plate of each panel corresponding the first plurality is connected to the bottom end plate of a respective one of the panels corresponding to the second plurality. Each of the interconnected precast panels may have a length corresponding to one or more stories of a building.

In addition, in one implementation for vertically connecting the precast panels, the precast wall system may further comprise a panel-to-panel vertical reinforcing member, such as a vertical reinforcing bar or tensioning cable. In this implementation, a first of the first plurality of precast panels has a duct extending from the top end plate of the first panel towards the bottom plate of the first panel. The top end plate of the first panel has a opening extending through the top end plate and in axial alignment with the duct of the first panel. A second of the second plurality of precast panels also has a duct extending from the top end plate of the second panel to the bottom plate of the second panel. The two end plates of the second panel each has a opening extending through the respective plate and in axial alignment with the duct of the second panel. The vertical reinforcing member is disposed in and extends through the duct of the second panel, the opening of the bottom end plate of the second panel, the opening of the top end plate of the first panel and the duct of the first panel.

In one implementation for horizontally connecting the precast panels, a first of the precast panels has a first side plate affixed to a side of the first precast panel and a second of the precast panels has a second side plate affixed to a side of the second precast panel that is adjacent to the first precast panel. The first side plate of the first precast panel is affixed to the second side plate of the second precast panel.

In another implementation for horizontally connecting the precast panels, the precast wall system may include a panel-to-panel horizontal reinforcing member, such as a vertical reinforcing bar or tensioning cable. A first of the first plurality of precast panels has a first duct extending through a first width of the first panel. A second of the second plurality of precast panels has a second duct extending through a second width of the second panel in axial alignment with the first duct of the first panel. The horizontal reinforcing member is disposed in and extends through the first duct of the panel and the second duct of the second panel.

In accordance with systems consistent with the present invention, another embodiment of a precast wall system is provided. The precast wall system comprises a plurality of precast panels. Each precast panel includes a cementitious material (such as reinforced concrete) and has a right side, a left side, a front side and a back side defining a plurality of corner edges extending a height of the respective precast panel. Each precast panel further includes a plurality of structural angles. Each angle is disposed along a respective one of the corner edges of the precast panel. Each angle has a first leg that extends along and is embedded in one of the right side or the left side of the panel and a second leg that extends along and is embedded in one of the front side or the back side of the respective panel. To implement a vertical panel-to-panel connection (in addition to or in lieu of affixing facing end plates of the first and second panels), a first of the precast panels may be arranged vertically on a second of the precast panels and each structural angle of the first precast panel may then be affixed to a corresponding one of the structural angles of the second precast panel. To implement a horizontal panel-to-panel connection, each structural angle of the first precast panel may have a leg embedded on the right side of the first precast panel that is horizontally aligned with and affixed to a corresponding structural angle of another of the precast panels having a leg embedded on the left side of the other precast panel.

Another embodiment of a precast panel is provided, in which the precast panel comprises a cementitious material and has a top end, a bottom end, a front side and a back side. The precast panel further includes a first plurality of lifting lugs. Each lifting lug includes a body and a first end extending and curving away from the body. The body of each lifting lug is configured to be removably attached to one of the front side or back side of the precast panel. The first end of each lifting lug has an attachment point (such as an orifice) for a hoisting rig. The first plurality of lifting lugs are attached in proximity to and spaced about the top end of the precast panel so that the first end of each lifting lug extends beyond and curves away from the top end. In one implementation, the first end of each lifting lug curves away from the top end of the precast panel such that the first end of each lifting lug is effective to capture and guide another vertically adjacent precast panel towards the top end of the precast panel having the first plurality of lifting lugs. In addition, the precast panel having the first plurality of lifting lugs may also have a second plurality of lifting lugs attached in proximity to and spaced about the bottom end of the precast panel. The first end of each of the second plurality of lifting lugs extends beyond and curves away from the bottom end of the precast panel such that the first end of each of the second plurality of lifting lugs effectively captures a top end of another precast panel disposed below the precast panel having the second plurality of lifting lugs.

In accordance with systems consistent with the present invention, another embodiment of a precast wall system is provided. The precast wall system comprises a plurality of horizontally interconnected precast panels. Each precast panel has a top end plate, a bottom end plate, a plurality of vertical bars disposed between the end plates and a cementitious material encasing the vertical bars and defining a plurality of sides of the respective panel. A first of the precast panels has a first column member half defining a right side of the first panel. A second of the precast panels has a second column member half defining a left side of the second panel. When the right side of the first precast panel and the left side of the second precast panel are disposed horizontally adjacent to each other, the first column member half and the second column member half collectively form a column member. The column member has a strength to support a gravity column, providing transition between systems consistent with the present invention and systems with steel columns.

In one implementation, one of the first plurality of horizontally interconnected precast panels is a corner precast panel that includes a column member having an end partially encased in the corner precast panel and another end extending above the top of the corner precast panel. The column member has a strength to support a gravity column.

In accordance with systems consistent with the present invention, another embodiment of a precast wall system is provided. In this embodiment, the precast wall system comprises a transfer member, a connection plate; a second plurality of horizontally interconnected precast panels defining a lower tier, and a first plurality of interconnected precast panels arranged on and vertically adjacent to the second plurality of the interconnected precast panels to define an upper tier. Each precast panel has a top end plate, a bottom end plate, a plurality of vertical bars disposed between the end plates and a cementitious material encasing the vertical bars and defining a plurality of sides of the respective panel. The upper tier precast panels are thinner than the lower tier precast panels. Each precast panel has a plurality of corner edges extending a height of the precast panel and each precast panel further includes a plurality of structural angles. Each angle is disposed along a respective one of the corner edges of the precast panel. The transfer member has a width equal to a change of thickness (Δt) of the lower and upper tier precast panels. The transfer member is affixed to the structural angle of one of the upper tier precast panels and a portion of the bottom end plate extending from the one upper precast panel. The connection plate spans and is affixed to the transfer member and the structural angle of one of the lower precast panels vertically adjacent to the one upper precast panel.

Other systems, methods, features, and advantages of the present invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an implementation of the present invention and, together with the description, serve to explain the advantages and principles of the invention. In the drawings:

FIG. 1 is a perspective view of an exemplary precast wall system consistent with the present invention;



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Precast wall panels and method of erecting a high-rise building using the panels patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Precast wall panels and method of erecting a high-rise building using the panels or other areas of interest.
###


Previous Patent Application:
Fire door
Next Patent Application:
Embedded dowel inserts
Industry Class:
Synthetic resins or natural rubbers -- part of the class 520 series
Thank you for viewing the Precast wall panels and method of erecting a high-rise building using the panels patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.84938 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers -g2-0.3018
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140047786 A1
Publish Date
02/20/2014
Document #
13874760
File Date
05/01/2013
USPTO Class
52250
Other USPTO Classes
International Class
/
Drawings
42



Follow us on Twitter
twitter icon@FreshPatents