FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: September 07 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Image forming apparatus and waste toner conveying device incorporated in same

last patentdownload pdfdownload imgimage previewnext patent


20140010579 patent thumbnailZoom

Image forming apparatus and waste toner conveying device incorporated in same


An image forming apparatus includes a waste toner conveying device including a primary conveyor to convey waste toner discharged from a plurality of primary cleaners and a secondary conveyor to convey waste toner discharged from a secondary cleaner. A relay conveyor conveys the waste toner discharged from the primary conveyor and the secondary conveyor. A waste toner container receives the waste toner discharged from the relay conveyor. The primary conveyor, the secondary conveyor, and the relay conveyor are disposed at one end of the image forming apparatus in a front-to-rear direction thereof. A secondary conveyor outlet of the secondary conveyor is disposed below a primary conveyor outlet of the primary conveyor and above an inlet of the waste toner container.

Browse recent Ricoh Company, Ltd. patents - Ohta-ku, Tokyo, JP
USPTO Applicaton #: #20140010579 - Class: 399358 (USPTO) -
Electrophotography > Cleaning Of Imaging Surface >Having Handling Of Removed Material

Inventors: Kaoru Yoshino, Satoshi Hatori, Naohiro Kumagai, Akira Fujimori, Hideyasu Seki, Ryohta Gotoh

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20140010579, Image forming apparatus and waste toner conveying device incorporated in same.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATION

This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2012-150222, filed on Jul. 4, 2012, in the Japanese Patent Office, the entire disclosure of which is hereby incorporated by reference herein.

BACKGROUND

1. Field

Example embodiments generally relate to an image forming apparatus and a waste toner conveying device, and more particularly, to an image forming apparatus for forming a toner image and a waste toner conveying device for conveying waste toner that is installed in the image forming apparatus.

2. Discussion of the Background

Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having two or more of copying, printing, scanning, facsimile, plotter, and other functions, typically form an image on a recording medium according to image data.

Thus, for example, a charger uniformly charges a surface of each of a plurality of photoconductive drums; an optical writer emits a light beam onto the charged surface of the respective photoconductive drums to form an electrostatic latent image on the respective photoconductive drums according to the image data; a development device supplies toner to the electrostatic latent image formed on the respective photoconductive drums to render the electrostatic latent image visible as a toner image; the toner images formed on the photoconductive drums are primarily transferred onto an intermediate transfer belt to form a color toner image thereof; the color toner image is secondarily transferred onto a recording medium; finally, a fixing device applies heat and pressure to the recording medium bearing the color toner image to fix the color toner image on the recording medium, thus forming the color toner image on the recording medium.

Such image forming apparatuses may include the plurality of photoconductive drums aligned below the intermediate transfer belt. After the primary transfer of the toner images formed on the plurality of photoconductive drums onto the intermediate transfer belt, a plurality of primary cleaners removes residual toner failed to be transferred onto the intermediate transfer belt and therefore remaining on the photoconductive drums therefrom, respectively. The removed toner is discharged from the primary cleaners and collected into a waste toner container as waste toner. Additionally, after the secondary transfer of the color toner image formed on the intermediate transfer belt onto the recording medium, a secondary cleaner removes residual toner failed to be transferred onto the recording medium and therefore remaining on the intermediate transfer belt therefrom. The removed toner is discharged from the secondary cleaner and collected into the waste toner container as waste toner.

For example, the waste toner discharged from the primary cleaners is conveyed through a primary conveyor pipe in communication with a primary inlet of the waste toner container that is situated in proximity to the front of the image forming apparatus. Conversely, the waste toner discharged from the secondary cleaner is conveyed through a secondary conveyor pipe in communication with a secondary inlet of the waste toner container that is situated in proximity to the rear of the image forming apparatus. Thus, the waste toner removed from the plurality of photoconductive drums and the waste toner removed from the intermediate transfer belt are collected into the identical waste toner container through the separate conveyor pipes and inlets, respectively.

The primary conveyor pipe that conveys the waste toner discharged from the primary cleaners is situated in proximity to the front of the image forming apparatus to communicate with the primary inlet of the waste toner container that is also situated in proximity to the front of the image forming apparatus. Conversely, the secondary conveyor pipe that conveys the waste toner discharged from the secondary cleaner is situated in proximity to the rear of the image forming apparatus to communicate with the secondary inlet of the waste toner container that is also situated in proximity to the rear of the image forming apparatus.

Accordingly, the front, primary conveyor pipe and the rear, secondary conveyor pipe sandwich the photoconductive drums and the intermediate transfer belt in the front-to-rear direction of the image forming apparatus, upsizing the image forming apparatus in the front-to-rear direction thereof.

Additionally, since the waste toner container has the two inlets, that is, the primary inlet in communication with the primary conveyor pipe and the secondary inlet in communication with the secondary conveyor pipe, two shutters and seals are attached to the two inlets, respectively, increasing manufacturing costs of the waste toner container.

SUMMARY

At least one embodiment may provide an image forming apparatus that includes a plurality of image carriers to carry a toner image; an intermediate transferor, disposed opposite the plurality of image carriers, to receive the toner image transferred from each of the plurality of image carriers and to be transferred onto a recording medium; a plurality of primary cleaners, disposed opposite the plurality of image carriers, to remove waste toner failed to be transferred onto the intermediate transferor from the plurality of image carriers respectively; a secondary cleaner, disposed opposite the intermediate transferor, to remove waste toner failed to be transferred onto the recording medium from the intermediate transferor; and a waste toner conveying device connected to the plurality of primary cleaners and the secondary cleaner to convey the waste toner discharged from the plurality of primary cleaners and the secondary cleaner. The waste toner conveying device includes a primary conveyor, disposed below and connected to the plurality of primary cleaners, to convey the waste toner discharged from the plurality of primary cleaners. The primary conveyor includes a primary conveyor outlet through which the waste toner is discharged from the primary conveyor. A secondary conveyor, disposed below and connected to the secondary cleaner, to convey the waste toner discharged from the secondary cleaner, includes a secondary conveyor outlet through which the waste toner is discharged from the secondary conveyor. A relay conveyor, in communication with the primary conveyor outlet of the primary conveyor and the secondary conveyor outlet of the secondary conveyor, conveys the waste toner discharged from the primary conveyor and the secondary conveyor. A waste toner container includes an inlet in communication with the relay conveyor to receive the waste toner discharged from the relay conveyor. The primary conveyor, the secondary conveyor, and the relay conveyor are disposed at one end of the image forming apparatus in a front-to-rear direction thereof. The secondary conveyor outlet is disposed below the primary conveyor outlet and above the inlet of the waste toner container.

At least one embodiment may provide a waste toner conveying device for conveying waste toner conveyed from a plurality of primary cleaners and a secondary cleaner. The waste toner conveying device includes a primary conveyor, disposed below and connected to the plurality of primary cleaners, to convey the waste toner discharged from the plurality of primary cleaners. The primary conveyor includes a primary conveyor outlet through which the waste toner is discharged. A secondary conveyor, disposed below and connected to the secondary cleaner, conveys the waste toner discharged from the secondary cleaner. The secondary conveyor includes a secondary conveyor outlet through which the waste toner is discharged. A relay conveyor, in communication with the primary conveyor outlet of the primary conveyor and the secondary conveyor outlet of the secondary conveyor, conveys the waste toner discharged from the primary conveyor and the secondary conveyor. A waste toner container includes an inlet in communication with the relay conveyor to receive the waste toner discharged from the relay conveyor. The secondary conveyor outlet is disposed below the primary conveyor outlet and above the inlet of the waste toner container.

Additional features and advantages of example embodiments will be more fully apparent from the following detailed description, the accompanying drawings, and the associated claims.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of example embodiments and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIG. 1 is a schematic vertical sectional view of an image forming apparatus according to an example embodiment of the present invention;

FIG. 2 is a vertical sectional view of a process cartridge installed in the image forming apparatus shown in FIG. 1;

FIG. 3 is a perspective sectional view of a waste toner conveying device incorporated in the image forming apparatus shown in FIG. 1;

FIG. 4 is a partial vertical sectional view of the waste toner conveying device shown in FIG. 3;

FIG. 5A is a vertical sectional view of a waste toner container incorporated in the waste toner conveying device shown in FIG. 4; and

FIG. 5B is a vertical sectional view of another waste toner container as a variation of the waste toner container shown in FIG. 5A.

The accompanying drawings are intended to depict example embodiments and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.

DETAILED DESCRIPTION

OF EXAMPLE EMBODIMENTS

It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to”, or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to”, or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.

Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper”, and the like, may be used herein for ease of description to describe one element or feature\'s relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein are interpreted accordingly.

Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are used only to distinguish one element, component, region, layer, or section from another region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present invention.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

In describing example embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.

Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, particularly to FIG. 1, an image forming apparatus 1 according to an example embodiment is explained.

FIG. 1 is a schematic vertical sectional view of the image forming apparatus 1. The image forming apparatus 1 may be a copier, a facsimile machine, a printer, a multifunction printer (MFP) having at least one of copying, printing, scanning, plotter, and facsimile functions, or the like. According to this example embodiment, the image forming apparatus 1 is a tandem color printer that forms color and monochrome toner images on recording media by electrophotography.

As shown in FIG. 1, the image forming apparatus 1 includes an intermediate transfer belt 17 serving as an intermediate transferor and rotatable in a rotation direction R1. Below the intermediate transfer belt 17 is a plurality of process cartridges 10Y, 10C, 10M, and 10K disposed opposite the intermediate transfer belt 17 and aligned in the rotation direction R1 of the intermediate transfer belt 17.

Below the process cartridges 10Y, 10C, 10M, and 10K is a writer 6 (e.g., an exposure device) that emits laser beams onto the process cartridges 10Y, 10C, 10M, and 10K according to image data sent from an external device such as a client computer. Below the writer 6 is a plurality of paper trays 7 loading a plurality of recording media P (e.g., transfer sheets). The process cartridges 10Y, 10C, 10M, and 10K serve as image forming devices that form yellow, cyan, magenta, and black toner images, respectively. The intermediate transfer belt 17 serves as an intermediate transferor transferred with the yellow, cyan, magenta, and black toner images superimposed thereon to be formed into a color toner image. A secondary transfer roller 18, disposed opposite the intermediate transfer belt 17, secondarily transfers the color toner image formed on the intermediate transfer belt 17 onto a recording medium P sent from one of the paper trays 7. Above the secondary transfer roller 18 is a fixing device 20 that fixes the color toner image on the recording medium P. Above the intermediate transfer belt 17 is a plurality of toner containers 28 that contains yellow, cyan, magenta, and black toners to be supplied to development devices 13 of the process cartridges 10Y, 10C, 10M, and 10K, respectively. Below the writer 6 is a waste toner container 31. A waste toner conveying device 30 conveys waste toner collected from the process cartridges 10Y, 10C, 10M, and 10K and the intermediate transfer belt 17 to the waste toner container 31.

Each of the process cartridges 10Y, 10C, 10M, and 10K, that is, an image forming device, is formed in a unit that accommodates a photoconductive drum 11 serving as an image carrier, a charger 12, the development device 13, and a primary cleaner 15. Each of the process cartridges 10Y, 10C, 10M, and 10K is detachably attached to the image forming apparatus 1 such that it is replaceable with a new one when it is at the end of its useful life. For example, as a user opens a front cover 2 depicted in FIG. 5A of the image forming apparatus 1, the user pulls one of the process cartridges 10Y, 10C, 10M, and 10K that the user wishes to replace out of the image forming apparatus 1 in a rear-to-front direction of the image forming apparatus 1 that is orthogonal to the rotation direction R1 of the intermediate transfer belt 17. Thereafter, the user inserts a new process cartridge 10Y, 10C, 10M, or 10K into the image forming apparatus 1 in a front-to-rear direction counter to the rear-to-front direction and closes the front cover 2. Thus, replacement is completed.

The process cartridges 10Y, 10C, 10M, and 10K form yellow, cyan, magenta, and black toner images on the photoconductive drums 11 incorporated therein, respectively.

A description is provided of an image forming operation performed by the image forming apparatus 1 described above to form a color toner image.

As a controller (e.g., a processor), that is, a central processing unit (CPU) provided with a random-access memory (RAM) and a read-only memory (ROM), for example, of the image forming apparatus 1 receives color image data from an external device such as a client computer, the writer 6 emits laser beams onto the photoconductive drums 11 of the process cartridges 10Y, 10C, 10M, and 10K according to yellow, cyan, magenta, and black image data constituting the color image data, thus forming electrostatic latent images on the photoconductive drums 11.

With reference to FIG. 2, taking the process cartridge 10K that forms a black toner image, a detailed description is now given of formation of an electrostatic latent image on the photoconductive drum 11.

FIG. 2 is a vertical sectional view of the process cartridge 10K. As shown in FIG. 2, the photoconductive drum 11 rotates clockwise in FIG. 2 in a rotation direction R2.

In a charging process, the charger 12 (e.g., a charging roller) disposed opposite the photoconductive drum 11 uniformly charges an outer circumferential surface of the photoconductive drum 11. Thus, the photoconductive drum 11 bears a charging potential.

In an exposure process, as the charged outer circumferential surface of the photoconductive drum 11 reaches an irradiation position where the writer 6 depicted in FIG. 1 is disposed opposite the photoconductive drum 11, a light source of the writer 6 emits a laser beam L onto the charged outer circumferential surface of the photoconductive drum 11 according to an electric signal corresponding to the black image data. For example, laser beams L emitted from the light source to a polygon mirror are reflected by the polygon mirror toward a plurality of lenses. The laser beams L, after passing through the plurality of lenses, travel through different optical paths that lead to the photoconductive drums 11 of the process cartridges 10Y, 10C, 10M, and 10K, respectively.

As shown in FIG. 1, the writer 6 emits a laser beam L onto the leftmost photoconductive drum 11 in FIG. 1 of the process cartridge 10Y according to the yellow image data. For example, the polygon mirror rotating at high speed directs the laser beam L to scan the photoconductive drum 11 in a main scanning direction parallel to an axial direction of the photoconductive drum 11. Thus, an electrostatic latent image corresponding to the yellow image data is formed on the outer circumferential surface of the photoconductive drum 11 of the process cartridge 10Y that is charged by the charger 12.

Similarly, the writer 6 emits a laser beam L onto the second photoconductive drum 11 from the left in FIG. 1 of the process cartridge 10C according to the cyan image data, thus forming an electrostatic latent image corresponding to the cyan image data on the photoconductive drum 11. The writer 6 emits a laser beam L onto the third photoconductive drum 11 from the left in FIG. 1 of the process cartridge 10M according to the magenta image data, thus forming an electrostatic latent image corresponding to the magenta image data on the photoconductive drum 11. The writer 6 emits a laser beam L onto the rightmost photoconductive drum 11 in FIG. 1 of the process cartridge 10K, that is, the most downstream photoconductive drum 11 in the rotation direction R1 of the intermediate transfer belt 17, according to the black image data, thus forming an electrostatic latent image corresponding to the black image data on the photoconductive drum 11.

As shown in FIG. 2, in a development process, as the electrostatic latent image formed on the photoconductive drum 11 reaches a development position where the development device 13 is disposed opposite the photoconductive drum 11, the development device 13 supplies black toner to the electrostatic latent image formed on the photoconductive drum 11, thus developing the electrostatic latent image into a black toner image. Thereafter, the black toner image formed on the photoconductive drum 11 reaches a primary transfer position where a primary transfer roller 14 in contact with an inner circumferential surface of the intermediate transfer belt 17 is disposed opposite the photoconductive drum 11 via the intermediate transfer belt 17.

In a primary transfer process, the primary transfer roller 14 primarily transfers the black toner image formed on the photoconductive drum 11 onto an outer circumferential surface of the intermediate transfer belt 17. Similarly, as shown in FIG. 1, the development devices 13 of the process cartridges 10Y, 10C, and 10M develop the electrostatic latent images formed on the photoconductive drums 11 into yellow, cyan, and magenta toner images, respectively. Thus, as the intermediate transfer belt 17 rotates in the rotation direction R1, the yellow, cyan, magenta, and black toner images formed on the photoconductive drums 11 of the process cartridges 10Y, 10C, 10M, and 10K are primarily transferred onto a same position on the intermediate transfer belt 17 successively, thus forming a color toner image on the intermediate transfer belt 17.

As shown in FIG. 2, after the primary transfer process, the outer circumferential surface of the photoconductive drum 11 reaches a primary cleaning position where the primary cleaner 15 is disposed opposite the photoconductive drum 11. In a cleaning process, the primary cleaner 15, that is, an image carrier cleaner, removes residual toner failed to be transferred onto the intermediate transfer belt 17 and therefore remaining on the photoconductive drum 11 therefrom. The removed toner is collected into the primary cleaner 15.

Thereafter, as the outer circumferential surface of the photoconductive drum 11 passes through a discharging position where a discharger is disposed opposite the photoconductive drum 11, the discharger discharges the outer circumferential surface of the photoconductive drum 11. Thus, a series of image forming processes performed on the photoconductive drum 11 is completed.

On the other hand, as shown in FIG. 1, as the intermediate transfer belt 17 rotates in the rotation direction R1, the color toner image formed on the intermediate transfer belt 17 reaches a secondary transfer position where the secondary transfer roller 18 is disposed opposite the intermediate transfer belt 17. In a secondary transfer process, the secondary transfer roller 18 secondarily transfers the color toner image formed on the intermediate transfer belt 17 onto a recording medium P conveyed from one of the paper trays 7.

Thereafter, the outer circumferential surface of the intermediate transfer belt 17 from which the color toner image is secondarily transferred onto the recording medium P reaches a secondary cleaning position where a secondary cleaner 9, that is, an intermediate transferor cleaner, is disposed opposite the intermediate transfer belt 17. In a secondary cleaning process, the secondary cleaner 9 removes residual toner failed to be transferred onto the recording medium P and therefore remaining on the intermediate transfer belt 17 therefrom. The removed toner is collected into the secondary cleaner 9. Thus, a series of transfer processes, that is, the primary transfer process and the secondary transfer process, performed on the intermediate transfer belt 17 is completed.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Image forming apparatus and waste toner conveying device incorporated in same patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Image forming apparatus and waste toner conveying device incorporated in same or other areas of interest.
###


Previous Patent Application:
Fixing device and image forming apparatus including same
Next Patent Application:
Image forming apparatus
Industry Class:
Electrophotography
Thank you for viewing the Image forming apparatus and waste toner conveying device incorporated in same patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.64124 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2809
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20140010579 A1
Publish Date
01/09/2014
Document #
13920571
File Date
06/18/2013
USPTO Class
399358
Other USPTO Classes
International Class
03G21/00
Drawings
6



Follow us on Twitter
twitter icon@FreshPatents