FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Multiple scaffold design and coating thereof

last patentdownload pdfdownload imgimage previewnext patent


20130035753 patent thumbnailZoom

Multiple scaffold design and coating thereof


A multiple stent structure including a plurality of stent bodies arranged end to end in which adjacent stent bodies of the structure are connected by a severable connecting portion disposed between the adjacent stent bodies is disclosed. A method of coating a plurality of stents including depositing a coating on the multiple stent structure and severing the severable connecting portions to disconnect the plurality of stent bodies is disclosed.
Related Terms: Scaffold Disconnect

Browse recent Abbott Cardiovascular Systems Inc. patents - Santa Clara, CA, US
USPTO Applicaton #: #20130035753 - Class: 623 116 (USPTO) - 02/07/13 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Arterial Prosthesis (i.e., Blood Vessel) >Stent Structure >Having Multiple Connected Bodies

Inventors: Yung-ming Chen, Henjen Ho

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130035753, Multiple scaffold design and coating thereof.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND

Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway of a target vessel. Stents are often used in the treatment of atherosclerotic stenosis and/or restenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. Typically, stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they reach their target vessel. Mechanical intervention via stents has reduced the rate of restenosis; restenosis, however, is still a significant clinical problem. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty or valvuloplasty) with apparent success. Accordingly, stents have been modified to perform not only as a mechanical scaffolding, but also to provide biological therapy.

Biological therapy can be achieved by medicating a stent, typically referred to as a drug delivery stent. Drug delivery stents provide for the local administration of a therapeutic substance at the diseased site. In contrast, systemic administration of a therapeutic substance may cause adverse or toxic side effects for the patient because large doses are needed in order for the therapeutic substance to have an efficacious effect at the diseased site. Thus, local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery therefore produces fewer side effects and achieves more favorable results.

Stents may be made of biostable materials that remain at an implant site permanently. However, the clinical need for a stent at an implant site may be temporary. Once treatment is complete, which may include structural tissue support and/or drug delivery, it may be desirable for the stent to be removed or disappear from the treatment location. One way of having a stent disappear may be by fabricating a stent in whole or in part from materials that erode or disintegrate through exposure to conditions within the body. Stents fabricated from bioresorbable, biodegradable, bioabsorbable, and/or bioerodable materials such as bioresorbable polymers can be designed to completely erode only after the clinical need for them has ended.

A typical method for medicating an implantable device includes, for example, applying a composition containing a polymer, a solvent, and a therapeutic substance to the implantable device using conventional techniques, such as spray-coating or dip-coating. The method further includes removing the solvent, leaving on the implantable device surface a coating of the polymer with the therapeutic substance impregnated in the polymer.

In a typical spray-coating method, a stent is mounted on a mandrel of a spray-coating device. Generally, the stent will rest on, or contact components of, a mandrel (or the mandrel itself) which supports the stent and allows it to rotate during a spray-coating process. The contact between the portions of the mandrel and stent, however, inevitably cause coating defects. These defects can include cob-webbing, tearing, bridging, clumping and/or lack of coating on portions of the stent. The embodiments of the present invention are intended to address coating defect issues caused by conventional mandrel designs.

Another issue with conventional stent coating operations is one of efficiency and cost. Stent coating is typically performed one stent or scaffold at a time. For each stent coated, the coating equipment must be set up. In addition, each stent or scaffold must be loaded prior to coating and unloaded after coating. Thus, machine utilization is limited by coating only one stent for machine set-up, loading, and unloading processes.

SUMMARY

Various embodiments of the present invention include a medical device comprising: a structure comprising a plurality of stent bodies arranged end to end, wherein adjacent stent bodies of the structure are connected by a severable connecting portion disposed between the adjacent stent bodies, wherein at least one of the stent bodies at an end of the structure comprises a severable end portion at the end of the structure.

Further embodiments of the present invention include a method of coating a plurality of stents comprising: providing a structure comprising a plurality of stent bodies arranged end to end, wherein adjacent stent bodies along the structure are connected by a severable connecting portion disposed between the adjacent stent bodies; and depositing a coating on the plurality of stent bodies; and severing the severable connecting portions to disconnect the plurality of stent bodies.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary stent.

FIG. 2 illustrates a method of coating a stent with a spray-coating device.

FIGS. 3A-B illustrates an alternative manner of supporting a stent during the coating process.

FIG. 4A depicts an exemplary multiple stent structure composed of two stent bodies connected by a severable portion.

FIG. 4B depicts a close-up view of the severable portion of FIG. 4A.

FIG. 4C depicts a close-up view of the proximal end of a multiple stent structure.

FIG. 5A depicts a strut that is a portion of a stent that is connected to a tab by a gate.

FIG. 5B depicts an alternative embodiment of stent bodies connected to a tab by gates.

FIG. 6 depicts a portion of a stent showing a side wall, an inner surface, and an outer surface of a strut.

FIG. 7A depicts a mandrel designed to support a multiple stent structure as shown in FIG. 4A.

FIG. 7B depicts a longitudinal cross section of the mandrel of FIG. 7A.

FIG. 8A depicts a multiple stent structure-mandrel assembly.

FIG. 8B depicts an axial cross section of assembly of FIG. 8A.

FIG. 9 depicts one embodiment of system for coating a multiple stent structure.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Multiple scaffold design and coating thereof patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Multiple scaffold design and coating thereof or other areas of interest.
###


Previous Patent Application:
Drug-delivery endovascular stent and method of forming the same
Next Patent Application:
Medical device with coating that promotes endothelial cell adherence
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Multiple scaffold design and coating thereof patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.37344 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m -g2-0.1053
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130035753 A1
Publish Date
02/07/2013
Document #
13195729
File Date
08/01/2011
USPTO Class
623/116
Other USPTO Classes
427/225
International Class
/
Drawings
10


Scaffold
Disconnect


Follow us on Twitter
twitter icon@FreshPatents