FreshPatents.com Logo
stats FreshPatents Stats
5 views for this patent on FreshPatents.com
2014: 1 views
2013: 4 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Radiolucent spinal fusion cage

last patentdownload pdfdownload imgimage previewnext patent


20130030531 patent thumbnailZoom

Radiolucent spinal fusion cage


An improved bone graft is provided for human implantation, particularly such as a spinal fusion cage for implantation into the inter-vertebral space between two adjacent vertebrae. The improved spinal fusion cage includes a substrate block of high strength biocompatible material having a selected size and shape to fit the anatomical space, and a controlled porosity analogous to natural bone. The substrate block may be coated with a bio-active surface coating material such as hydroxyapatite or a calcium phosphate to promote bone ingrowth and enhanced bone fusion. Upon implantation, the fusion cage provides a spacer element having a desired combination of mechanical strength together with osteoconductivity and osteoinductivity to promote bone ingrowth and fusion, as well as radiolucency for facilitated post-operative monitoring. The fusion cage may additionally carry one or more natural or synthetic therapeutic agents for further promoting bone ingrowth and fusion.
Related Terms: Analogous Bone Graft Calcium Calcium Phosphate Fusion Graft Hydroxyapatite Implant Implantation Phosphate Radiolucent Spinal Fusion Vertebra Vertebrae Adjacent Vertebra Apatite

USPTO Applicaton #: #20130030531 - Class: 623 1716 (USPTO) - 01/31/13 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Implantable Prosthesis >Bone >Spine Bone >Including Spinal Disc Spacer Between Adjacent Spine Bones

Inventors: Darrel S. Brodke, Bret M. Berry, Ashok C. Khandkar, Ramaswamy Lakshminarayanan, Mahendra S. Rao

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130030531, Radiolucent spinal fusion cage.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND OF THE INVENTION

This is a continuation-in-part of U.S. Ser. No. 10/137,108, filed Apr. 30, 2002, which in turn claims the benefit of U.S. Provisional Application No. 60/287,824, filed May 1, 2001.

This invention relates generally to improvements in bone grafts such as spinal fusion cages of the type designed for human implantation between adjacent spinal vertebrae, to maintain the vertebrae in substantially fixed spaced relation while promoting interbody bone ingrowth and fusion therebetween. More particularly, this invention relates to an implantable bone graft such as a spinal fusion cage having an improved combination of enhanced mechanical strength together with osteoinductive and osteoconductive properties, in a device that additionally and beneficially provides visualization of bone growth for facilitated post-operative monitoring.

Implantable interbody bone grafts such as spinal fusion devices are known in the art and are routinely used by spine surgeons to keep adjacent vertebrae in a desired spaced-apart relation while interbody bone ingrowth and fusion takes place. Such spinal fusion devices are also used to provide weight bearing support between adjacent vertebral bodies and thus correct clinical problems. Such spinal fusion devices are indicated for medical treatment of degenerative disc disease, discogenic low back pain and spondylolisthesis. These conditions have been treated by using constructs, typically made from metals such as titanium or cobalt chrome alloys such as used in orthopedic implants, and allograft (donor) or autograft (patient) bone to promote bone ingrowth and fusion.

Typical interbody spinal fusion devices, such as plugs for example, have hollow or open spaces that are usually filled with bone graft material, either autogenous bone material provided by the patient or allogenous bone material provided by a third party donor. These devices also have lateral slots or openings which are primarily used to promote ingrowth of blood supply and grow active and live bone. These implants may also have a patterned exterior surface such as a ribbed or serrated surface or a screw thread to achieve enhanced mechanical interlock between adjacent vertebrae, with minimal risk of implant dislodgement from the site. See, for example, U.S. Pat. Nos. 5,785,710; and 5,702,453. Typical materials of construction for such interbody spinal fusion devices include bio-compatible carbon fiber reinforced polymers, cobalt chrome alloys, and stainless steels or titanium alloys. See, for example, U.S. Pat. No. 5,425,772.

Most state-of-the-art spinal fusion implants are made from titanium alloy and allograft (donor) bone, and have enjoyed clinical success as well as rapid and widespread use due to improved patient outcomes. However, traditional titanium-based implant devices exhibit poor radiolucency characteristics, presenting difficulties in post-operative monitoring and evaluation of the fusion process due to the radio-shadow produced by the non-lucent metal. There is also clinical evidence of bone subsidence and collapse which is believed to be attributable to mechanical incompatibility between natural bone and the metal implant material. Moreover, traditional titanium-based implant devices are primarily load bearing but are not osteoconductive, i.e., not conducive to direct and strong mechanical attachment to patient bone tissue, leading to potential graft necrosis, poor fusion and stability. By contrast, allograft bone implants exhibit good osteoconductive properties, but can subside over time as they assimilate into natural bone. Further, they suffer from poor pull out strength resulting in poor stability, primarily due to the limited options in machining the contact surfaces. Allograft bone implants also have variable materials properties and, perhaps most important of all, are in very limited supply. A small but finite risk of disease transmission with allograft bone is a factor as well. In response to these problems some developers are attempting to use porous tantalum-based metal constructs, but these have met with limited success owing to the poor elastic modulii of porous metals.

A typical titanium alloy spinal fusion device is constructed from a hollow cylindrical and externally threaded metal cage-like construct with fenestrations that allow communication of the cancellous host tissue with the hollow core, which is packed with morselized bone graft material. This design, constrained by the materials properties of titanium alloys, relies on bony ingrowth into the fenestrations induced by the bone graft material. However, the titanium-based structure can form a thin fibrous layer at the bone/metal interface, which degrades bone attachment to the metal. In addition, the hollow core into which the graft material is packed may have sub-optimal stress transmission and vascularization, thus eventually leading to failure to incorporate the graft. Mechanical stability, transmission of fluid stress, and the presence of osteoinductive agents are required to stimulate the ingrowth of vascular buds and proliferate mesenchymal cells from the cancellous host tissue into the graft material. However, most titanium-based spinal fusion devices in use today have end caps or lateral solid walls to prevent egress of the graft outwardly from the core and ingress of remnant disc tissue and fibroblasts into the core.

Autologous (patient) bone fusion has been used in the past and has a theoretically ideal mix of osteoconductive and osteoinductive properties. However, supply of autologous bone material is limited and significant complications are known to occur from bone harvesting. Moreover, the costs associated with harvesting autograft bone material are high, requiring two separate incisions, with the patient having to undergo more pain and recuperation due to the harvesting and implantation processes. Additionally, autologous cancellous bone material has inadequate mechanical strength to support intervertebral forces by itself, whereby the bone material is normally incorporated with a metal-based construct.

Ceramic materials provide potential alternative structures for use in spinal fusion implant devices. In this regard, monolithic ceramic constructs have been proposed, formed from conventional materials such as hydroxyapatitie (HAP) and/or tricalcium phosphate (TCP). See, for example, U.S. Pat. No. 6,037,519. However, while these ceramic materials may provide satisfactory osteoconductive and osteoinductive properties, they have not provided the mechanical strength necessary for the implant.

Thus, a significant need exists for further improvements in and to the design of bone grafts such as spinal fusion implant devices, particularly to provide a high strength implant having high bone ingrowth and fusion characteristics, together with substantial radiolucency for effective and facilitated post-operative monitoring.

Hence, it is an object of the present invention to provide an improved bone graft such as an interbody spinal fusion implant or cage made from a bio-compatible open pore structure; which has a radiolucency similar to that of the surrounding bone. It is also an object of the present invention to provide a substrate of high bio-mechanical strength for carrying biological agents which promote intervertebral bone ingrowth, healing and fusion. It is a further objective of the present invention to provide an interbody fusion device which has mechanical properties that substantially match that of natural bone.

SUMMARY

OF THE INVENTION

In accordance with the invention, an improved bone graft such as a spinal fusion cage is provided for human implantation into the space between a pair of adjacent vertebrae, following removal of disc material between endplates of the adjacent vertebrae, to maintain the adjacent vertebrae in a predetermined and substantially fixed spaced relation while promoting interbody bone ingrowth and fusion. In this regard, the improved spinal fusion cage of the present invention is designed for use in addressing clinical problems indicated by medical treatment of degenerative disc disease, discogenic lower back pain, and spondylolisthesis.

The improved bone graft, as embodied in the form of the improved spinal fusion cage, comprises a substrate block formed from a bio-compatible material composition having a relatively high bio-mechanical strength and load bearing capacity. This substrate may be porous, open-celled, or dense solid. A preferred composition of the high strength substrate block comprises a silicon nitride ceramic material. The substrate block may be porous, having a porosity of about 10% to about 80% by volume with open pores distributed throughout and a pore size range of from about 5 to about 500 microns. When the substrate is porous, the porosity of the substrate block is gradated from a first relatively low porosity region emulating or mimicking the porosity of cortical bone to a second relatively higher porosity region emulating or mimicking the porosity of cancellous bone. In a second embodiment, the substrate block is a dense solid comprised of a ceramic, metal or polymer material. This dense solid substrate would then be attached to a second highly porous region emulating or mimicking the porosity of cancellous bone. Preferably, the porous region would be formed around the substrate.

In the method where a dense, solid material is used as the substrate block, the block will be externally coated with a bio-active surface coating material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material. The porous portion is internally and externally coated with a bio-active surface coating material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material. The porous region, however, may be in and of itself a bio-active material selected for relatively high osteoconductive and osteoinductive properties, such as a hydroxyapatite or a calcium phosphate material.

The thus-formed bone graft can be made In a variety of shapes and sizes to suit different specific implantation requirements. Preferred shapes include a generally rectangular block with a tapered or lordotic cross section to suit the required curvature of the inter-vertebral space, in the case of a spinal fusion device. The exterior superior and inferior surfaces of the rectangular body may include ridges or teeth for facilitated engagement with the adjacent vertebrae. Alternative preferred shapes include a generally oblong, rectangular block which may also include serrations or the like on one or more exterior faces thereof, and/or may have a tapered or lordotic cross section for improved fit into the inter-vertebral space. A further preferred shape may include a crescent shape block which may also include serrations or the like on one or more exterior faces thereof, and/or may have a tapered or lordotic cross section for improved fit into the inter-vertebral space. The bone graft may desirably include notches for releasable engagement with a suitable insertion tool. In addition, the bone graft may also include one or more laterally open recesses or bores for receiving and supporting osteoconductive bone graft material, such as allograft (donor) or autograft (patient) material.

Further alternative bone graft configurations may include a dense substrate region substantially emulating cortical bone, to define a high strength loading bearing zone or strut for absorbing impaction and insertion load, in combination with one or more relatively high porosity second regions substantially emulating cancellous bone for contacting adjacent patient bone for enhanced bone ingrowth and fusion.

The resultant bone graft exhibits relatively high mechanical strength for load bearing support, for example, between adjacent vertebrae in the case of a spinal fusion cage, while additionally and desirably providing high osteoconductive and osteoinductive properties to achieve enhanced bone ingrowth and interbody fusion. Importantly, these desirable characteristics are achieved in a structure which is substantially radiolucent so that the implant does not interfere with post-operative radiographic monitoring of the fusion process.

In accordance with a further aspect of the invention, the bone graft may additionally carry one or more therapeutic agents for achieving further enhanced bone fusion and ingrowth. Such therapeutic agents may include natural or synthetic therapeutic agents such as bone morphogenic proteins (BMPs), growth factors, bone marrow aspirate, stem cells, progenitor cells, antibiotics, or other osteoconductive, osteoinductive, osteogenic, or any other fusion enhancing material or beneficial therapeutic agent.

Other features and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate the invention. In such drawings:

FIG. 1 is a perspective view depicting the spinal fusion cage in the inter-vertebral space;

FIG. 2 is a perspective view showing one preferred embodiment of the spinal fusion cage;

FIG. 3 is a perspective view showing the load bearing portion of the device of FIG. 2 with anterior and posterior load bearing walls connected by a strut, relieved in the superior and inferior aspects;



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Radiolucent spinal fusion cage patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Radiolucent spinal fusion cage or other areas of interest.
###


Previous Patent Application:
Methods and instruments for endoscopic interbody surgical techniques
Next Patent Application:
Spinal implant and method of use
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Radiolucent spinal fusion cage patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.55585 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook -g2-0.2862
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130030531 A1
Publish Date
01/31/2013
Document #
13538559
File Date
06/29/2012
USPTO Class
623 1716
Other USPTO Classes
International Class
61F2/44
Drawings
6


Analogous
Bone Graft
Calcium
Calcium Phosphate
Fusion
Graft
Hydroxyapatite
Implant
Implantation
Phosphate
Radiolucent
Spinal Fusion
Vertebra
Vertebrae
Adjacent Vertebra
Apatite


Follow us on Twitter
twitter icon@FreshPatents