FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: December 22 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons

last patentdownload pdfdownload imgimage previewnext patent

20130030232 patent thumbnailZoom

Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons


A catalyst is provided for production of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst contains crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having a 10-membered ring structure.
Related Terms: Hydrocarbon Silica Zeolite Crystallin
Browse recent Jx Nippon Oil & Energy Corporation patents
USPTO Applicaton #: #20130030232 - Class: 585476 (USPTO) - 01/31/13 - Class 585 
Chemistry Of Hydrocarbon Compounds > Aromatic Compound Synthesis >By Ring Opening, Removal, Degradation, Or Shift On Chain Or Other Ring



Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130030232, Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to a catalyst for producing monocyclic aromatic hydrocarbons and a method of producing monocyclic aromatic hydrocarbons, which are capable of producing monocyclic aromatic hydrocarbons from oil containing a large amount of polycyclic aromatic hydrocarbons.

Priority is claimed on Japanese Patent Application No. 2010-010262, filed Jan. 20, 2010, the content of which is incorporated herein by reference.

BACKGROUND ART

Light cycle oil (hereinafter, referred to as “LCO”), which is cracked light oil produced by a fluidized catalytic cracking, contains a large amount of polycyclic aromatic hydrocarbons, and has been used as light oil or heavy oil. However, in recent years, investigations have been conducted to obtain, from LCO, monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 (such as benzene, toluene, xylene and ethylbenzene), which may be used as high-octane gasoline base materials or petrochemical raw materials, and offer significant added value.

For example, Patent Document 1 to Patent Document 3 disclose methods of producing monocyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons contained in large amounts within LCO and the like by using zeolite catalysts.

In addition, as a method of producing monocyclic aromatic hydrocarbons through reaction using zeolite catalysts, Patent Document 4 discloses a method of producing monocyclic aromatic hydrocarbons from aromatic compounds having a carbon number of 9 or more by using beta-type zeolite, which has a 12-membered ring structure and a large pore size, as a catalyst.

Patent Document 5 discloses a method of producing monocyclic aromatic hydrocarbons from paraffin-based hydrocarbons having a carbon number of 2 to 12 by using beta-type zeolite as a catalyst.

CITATION LIST Patent Document

[Patent Document 1] Japanese Unexamined Patent Application, First publication No. H3-2128 [Patent Document 2] Japanese Unexamined Patent Application, First publication No. H3-52993 [Patent Document 3] Japanese Unexamined Patent Application, First publication No. H3-26791 [Patent Document 4] Published Japanese Translation No. H4-504577 of the PCT International Publication [Patent Document 5] Japanese Unexamined Patent Application, First publication No. H2-184517

DISCLOSURE OF INVENTION Technical Problem

However, in the methods disclosed in Patent Document 1 to Patent Document 3, the yields of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 have not been entirely satisfactory. In addition, the methods disclosed in Patent Document 4 and Patent Document 5 are not methods of obtaining both monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower.

An object of the invention is to provide a catalyst for production of monocyclic aromatic hydrocarbons and a method of producing monocyclic aromatic hydrocarbons, which are capable of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock containing polycyclic aromatic hydrocarbons with high yield.

Solution to Problem

(1) According to an embodiment of the invention, a catalyst is provided for production of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst contains crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having 10-membered ring structure.

(2) The catalyst for production of monocyclic aromatic hydrocarbons according to (1), wherein in the crystalline aluminosilicate, a mass ratio of the large-pore zeolite to the intermediate-pore zeolite (large-pore zeolite/intermediate-pore zeolite) is preferably 2/98 to 50/50

(3) The catalyst for production of monocyclic aromatic hydrocarbons according to (1) or (2), wherein the large-pore zeolite is preferably a zeolite of any type selected from a BEA type, an FAU type, and an MOR type.

(4) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (3), wherein the large-pore zeolite is preferably BEA-type zeolite.

(5) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (4), wherein the intermediate-pore zeolite is preferably MFI-type zeolite.

(6) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (5), wherein the catalyst preferably further contain phosphorus.

(7) According to another embodiment of the invention, a method is provided of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8. The method includes bringing feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower into contact with the catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (6).

(8) The method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 according to (7), wherein as the feedstock, light cycle oil produced by a fluidized catalytic cracking is preferably used.

(9) The method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 according to (7) or (8), wherein the feedstock is preferably brought into contact with the catalyst for production of monocyclic aromatic hydrocarbons in a fluidized bed reaction unit.

Advantageous Effects of Invention

According to the catalyst for production of monocyclic aromatic hydrocarbons and the method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8, monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is preferably produced with high yield from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower.

BEST MODE FOR CARRYING OUT THE INVENTION Catalyst for Production of Monocyclic Aromatic Hydrocarbon

The catalyst for production of monocyclic aromatic hydrocarbons according to this embodiment (hereinafter, abbreviated as “catalyst”) is used for producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 (hereinafter, abbreviated as “monocyclic aromatic hydrocarbons”) from feedstock containing polycyclic aromatic hydrocarbons and saturated hydrocarbons, and contains crystalline aluminosilicate.

(Crystalline Aluminosilicate)

In this embodiment, the crystalline aluminosilicate contains large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having a 10-membered ring structure.

As the large-pore zeolite having a 12-membered ring structure, for example, zeolites having a framework type of an AFI type, an ATO type, a BEA type, a CON type, an FAU type, a GME type, an LTL type, an MOR type, an MTW type, and an OFF type is preferably exemplified. Among these, the BEA type, the FAU type, and the MOR type are preferable from an industrially usable aspect, and the BEA type is more preferable because the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is relatively raised.

As the intermediate-pore zeolite having a 10-membered ring structure, for example, zeolites having a framework type of an AEL type, an EUO type, an FER type, an HEU type, an MEL type, an MFI type, an NES type, a TON type, and a WEI type is preferably exemplified. Among these, the MFI type is preferable because the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is relatively raised.

In addition, all of the framework type types of the zeolite, which are exemplified in this embodiment, are structure codes based on the definition of the International Zeolite Association.

In addition to the large-pore zeolite, the crystalline aluminosilicate may contain small-pore zeolite having a structure of a 10-membered ring or less, and ultra-large-pore zeolite having a structure of a 14-membered ring or more.

Here, as the small-pore zeolite, for example, zeolites having a framework type of an ANA type, a CHA type, an ERI type, a GIS type, a KFI type, an LTA type, an NAT type, a PAU type, and a YUG type is preferably exemplified.

As the ultra-large-pore zeolite, for example, zeolites having a framework type of a CLO type, and a VPI type is preferably exemplified.

In a case where the catalyst is used as a catalyst for a fixed bed, the content of the crystalline aluminosilicate is preferably 60 to 100% by mass on the basis of 100% by mass of the entirety of the catalyst, and more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. When the content of the crystalline aluminosilicate is 60% by mass or more, the total yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and the aliphatic hydrocarbons having a carbon number of 3 to 4 is sufficiently raised.

In a case where the catalyst is used as a catalyst for a fluidized bed, the content of the crystalline aluminosilicate is preferably 20 to 60% by mass on the basis of 100% by mass of the entirety of the catalyst, and more preferably 30 to 60% by mass, and still more preferably 35 to 60% by mass. When the content of the crystalline aluminosilicate is 20% by mass or more, the total yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and the aliphatic hydrocarbons having a carbon number of 3 to 4 is sufficiently raised. When the content of the crystalline aluminosilicate exceeds 60% by mass, the content of a binder that may be mixed with the catalyst becomes small, and thus may be not appropriate as the catalyst for the fluidized bed.

In the crystalline aluminosilicate, a mass ratio of the large-pore zeolite to the intermediate-pore zeolite (large-pore zeolite/intermediate-pore zeolite) is preferably 2/98 to 50/50, more preferably 5/95 to 50/50, still more preferably 10/90 to 30/70. When the mass ratio is 2/98 or more, an effect of using the large-pore zeolite is sufficiently exhibited, and thus the yield of the monocyclic aromatic hydrocarbons is sufficiently raised. When the mass ratio is 50/50 or less, coking of the feedstock is prevented, and thus the yield of the monocyclic aromatic hydrocarbons is sufficiently raised.

(Other Components)

The catalyst may contain gallium and/or zinc as necessary. When gallium and/or zinc are contained, a generation ratio of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 tends to be increased.

As a method used to incorporate gallium into the catalyst, a type in which gallium is incorporated in a lattice framework of the crystalline aluminosilicate (crystalline aluminogallosilicate), a type in which gallium is carried by the crystalline aluminosilicate (gallium-supporting crystalline aluminosilicate), and a type including both of these types is exemplified.

As a method used to incorporate zinc into the catalyst, a type in which zinc is incorporated in a lattice framework of the crystalline aluminosilicate (crystalline aluminozincosilicate), a type in which zinc is carried by the crystalline aluminosilicate (zinc-supporting crystalline aluminosilicate), and a type including both of these types is exemplified.

The crystalline aluminogallosilicate and the crystalline aluminozincosilicate have a structure in which SiO4, AlO4, and GaO4/ZnO4 structures have a tetrahedral coordination in a framework. In addition, the crystalline aluminogallosilicate and the crystalline aluminozincosilicate may be obtained, for example, by gel crystallization through hydrothermal synthesis, by a method in which gallium or zinc is inserted into the lattice framework of the crystalline aluminosilicate, or by a method in which aluminum is inserted into the lattice framework of crystalline gallosilicate or crystalline zincosilicate.

The gallium-supporting crystalline aluminosilicate may be obtained by supporting gallium on a crystalline aluminosilicate using a conventional method such as an ion-exchange method or impregnation method. There are no particular limitations on the gallium source used in these methods, and examples include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.

The zinc-supporting crystalline aluminosilicate may be obtained by supporting zinc on a crystalline aluminosilicate using a known method such as an ion-exchange method or impregnation method. There are no particular limitations on the zinc source used in these methods, and examples include zinc salts such as zinc nitrate and zinc chloride, and zinc oxide.

In a case where the catalyst contains gallium and/or zinc, the lower limit of the content of gallium and/or zinc is preferably 0.01% by mass or more on the basis of 100% by mass of the total mass of the crystalline aluminosilicate, and more preferably 0.05% by mass or more. On the other hand, the upper limit thereof is preferably 5.0% by mass or less, and more preferably 1.5% by mass or less. When the content of gallium and/or zinc is 0.01% by mass or more, a generation ratio of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is relatively raised. When the content thereof exceeds 5.0% by mass, a generated amount of coke is increased, and thus the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is lowered. Therefore, this case is not preferable.

The catalyst may contain phosphorus and/or boron as necessary. When phosphorus and/or boron is contained, a decrease with the passage of time in the total yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and the aliphatic hydrocarbon having a carbon number of 3 to 4 may be prevented, and the coke may be prevented from being generated on the surface of the catalyst.

There are no particular limitations on a method of incorporating phosphorus in the catalyst, and examples thereof include a method in which phosphorus is made to be supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminozincosilicate by using an ion-exchange method, impregnation method, or the like, a method in which a phosphorus compound is incorporated during synthesis of the zeolite, and a part in the framework of the crystalline aluminosilicate is substituted with phosphorus, a method in which a crystallization promoter containing phosphorus is used during synthesis of the zeolite, and the like. Although there are no particular limitations on a phosphate ion-containing aqueous solution used at that time, a solution, which is prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, or another water-soluble phosphate salt in water at an arbitrary concentration, is preferably used.

There are no particular limitations on a method of incorporating boron in the catalyst, and examples thereof include a method in which boron is made to be supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminozincosilicate by using an ion-exchange method, impregnation method, or the like, a method in which a boron compound is incorporated during synthesis of the zeolite, and a part in the framework of the crystalline aluminosilicate is substituted with boron, a method in which a crystallization promoter containing boron is used during synthesis of the zeolite, and the like.

In a case where the catalyst contains phosphorus and/or boron, the lower limit of the content of phosphorus and/or boron is preferably 0.1% by mass or more on the basis of 100% by mass of the total mass of the crystalline aluminosilicate, and more preferably 0.2% by mass or more. On the other hand, the upper limit thereof is preferably 5.0% by mass or less, and more preferably 3.0% by mass or less. When the content of phosphorus and/or boron is 0.1% by mass or more, a decrease with the passage of time in the yield is further prevented. When the content thereof exceeds 5.0% by mass, the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is lowered, and thus this is not preferable.

(Form)

The catalyst has a powder form, a granular form, or a pellet form, or the like depending on a reaction format. For example, in the case of a fluidized bed, the catalyst has the powder form, whereas in the case of a fixed bed, the catalyst has the granular form or the pellet form.

In the case of obtaining the catalyst having the granular form or the pellet form, an oxide inactive to the catalyst is mixed with the catalyst as a binder as necessary, and then the resultant mixture is molded with various types of molding machine.

In a case where the catalyst of this embodiment contains a binder or the like, the binder containing phosphorus and/or boron can be used. At this time, in the catalyst, the content of phosphorus and/or boron that are contained in the crystalline aluminosilicate (% by mass of phosphorus and/or boron on the basis of 100% by mass of the total mass of the crystalline aluminosilicate) is preferably 0.1 to 5.0% by mass. An amount of phosphorus and/or boron that are contained in the crystalline aluminosilicate represents an amount of phosphorus and/or boron that act on the crystalline aluminosilicate.

In addition, in a case where the catalyst contains a binder or the like, the catalyst is produced by mixing the binder or the like, and gallium and/or zinc supporting crystalline aluminosilicate or crystalline aluminogallosilicate and/or crystalline aluminozincosilicate, and then adding phosphorus and/or boron to the resulting mixture. At this time, in the catalyst, the content of phosphorus and/or boron that are contained in the crystalline aluminosilicate (% by mass of phosphorus and/or boron on the basis of 100% by mass of the total mass of the crystalline aluminosilicate) is preferably 0.1 to 5.0% by mass.

As the binder or the like that is mixed with the catalyst, an inorganic oxide is used, and as the binder or the like, a material containing phosphorus and/or boron can be used. By also considering the amount of phosphorus and/or boron that act on the crystalline aluminosilicate in the case of using the binder or the like that contains phosphorus and/or boron, it is preferable that the content of phosphorus and/or boron with respect to the total weight of the catalyst be 0.1 to 10% by mass, and the lower limit thereof be more preferably 0.5% by mass or more. The upper limit thereof is more preferably 9% by mass or less, and still more preferably 8% by mass or less. When the content of phosphorus and/or boron with respect to the total weight of the catalyst is 0.1% by mass or more, a decrease in the yield, over time, of the monocyclic aromatic hydrocarbon is prevented, and when the content is 10% by mass or less, the yield of the monocyclic aromatic hydrocarbon is raised.

(Method of Producing Monocyclic Aromatic Hydrocarbons)

The method of producing monocyclic aromatic hydrocarbons according to this embodiment is a method in which feedstock contacts with the above-mentioned catalyst to react with the other.

The reaction in this embodiment is a method in which acid points of the catalyst and the feedstock are brought into contact with each other, and through various reactions including decomposition, dehydrogenation, cyclization, hydrogen transfer, and the like, the polycyclic aromatic hydrocarbons are cleaved and are converted into monocyclic aromatic hydrocarbons having a carbon number of 6 to 8.

Here, the acid points are points which are, on a catalyst support, capable of releasing protons or capable of accepting electrons, and which are active points exhibiting acidity.

(Feedstock)

The feedstock that is used in this embodiment is oil in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. In the oil in which the 10 vol % distillation temperature is lower than 140° C., BTX (Benzene, Toluene, and Xylene) is produced from light oil, and thus this does not match with the gist of this embodiment. In addition, in the case of using oil in which the 90 vol % distillation temperature is higher than 380° C., the yield of the monocyclic aromatic hydrocarbons is low and an amount of deposited coke on the catalyst increases, such that there is a tendency for activity of the catalyst to rapidly decrease.

It is preferable that the 10 vol % distillation temperature of the feedstock be 150° C. or higher and the 90 vol % distillation temperature of the feedstock be 380° C. or lower.

In addition, the 10 vol % distillation temperature and the 90 vol % distillation temperature described here represent values that are measured in accordance with JIS K2254 “Petroleum Products-Distillation Test Method”

As the feedstock in which the 10 vol % distillation temperature is 140° C. or higher and the 90 vol % distillation temperature is 380° C. or lower, for example, LCO produced by a fluid catalytic cracking unit, coal liquefaction oil, hydrocracked refined oil from heavy oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and hydrocracked refined oil from oil sands may be exemplified.

In addition, when the feedstock contains a large amount of polycyclic aromatic hydrocarbons, the yield of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 tends to decrease, and therefore the content of polycyclic aromatic hydrocarbons (the polycyclic aromatic content) in the feedstock is preferably 50% by volume or less, and more preferably 30% by volume or less.

In addition, the polycyclic aromatic content described here represents the total value of the content of bicyclic aromatic hydrocarbons (the bicyclic aromatic content) and the content of tricyclic or higher aromatic hydrocarbons (the tricyclic or higher aromatic content) measured in accordance with JPI-5 S-49 “Petroleum Products—Determination of Hydrocarbon Types—High Performance Liquid Chromatography”.

(Reaction Format)

Examples of the reaction format used for bringing the feedstock into contact with the catalyst for reaction include a fixed bed, a moving bed and a fluidized bed. In this embodiment, since a heavy oil fraction is used as the raw material, the fluidized bed is preferable as it enables the coke fraction adhered to the catalyst to be removed in a continuous manner and enables the reaction to proceed in a stable manner. A continuous regeneration-type fluidized bed, in which the catalyst is circulated between a reactor and a regenerator, and thus a reaction-regeneration cycle is continuously repeated, is more preferable. The feedstock when being brought into contact with the catalyst is preferably in a gaseous state. Furthermore, the raw material is preferably diluted with a gas as necessary. Furthermore, in a case where unreacted raw material occurs, this may be recycled as necessary.

(Reaction Temperature)

Although there are no particular limitations on the reaction temperature during contact of the feedstock with the catalyst for reaction, a reaction temperature is preferably 350 to 700° C. In terms of achieving satisfactory reaction activity, the lower limit is more preferably 450° C. or higher. On the other hand, the upper limit temperature of 650° C. or lower is preferable as it is not only more advantageous from an energy perspective, but also enables easy regeneration of the catalyst.

(Reaction Pressure)

The reaction pressure during contact of the feedstock with the catalyst for reaction is preferably 1.0 MPaG or lower. When the reaction pressure is 1.0 MPaG or lower, the generation of by-product light gases may be prevented, and the pressure resistance required for a reaction device may be lowered.

(Contact Time)

There are no particular limitations on the contact time between the feedstock and the catalyst as long as a desired reaction actually proceeds, but in terms of the gas transit time across the catalyst, a time of 1 to 300 seconds is preferable. The lower limit for this time is more preferably 5 seconds or more, and the upper limit is more preferably 60 seconds or less. When the contact time is 1 second or more, reliable reaction is achieved, and when the contact time is 300 seconds or less, deposition of carbonaceous matter on the catalyst due to coking or the like is suppressed. Furthermore, the amount of light gas generated by cracking may also be suppressed.

In the method of producing the monocyclic aromatic hydrocarbons according to this reaction, by contacting the feedstock with acid points of the catalyst, and through various reactions including decomposition, dehydrogenation, cyclization, hydrogen transfer, and the like, the polycyclic aromatic hydrocarbons are cleaved and monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 are obtained.

In this embodiment, the yield of monocyclic aromatic hydrocarbons is preferably 25% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more. It is not preferable that the yield of monocyclic aromatic hydrocarbons is lower than 25% by mass, because the low concentration of the desired products in a reaction mixture causes low recovery efficiency.

EXAMPLES

Hereinafter, the embodiment will be described in detail on the basis of examples and comparative examples, but this embodiment is not limited to these examples.

(Preparation of Proton-Type MFI Zeolite)

A solution (A) composed of 1706.1 g of sodium silicate (J Sodium Silicate No. 3, SiO2: 28 to 30% by mass, Na: 9 to 10% by mass, remainder is water; manufactured by Nippon Chemical Industrial Co., Ltd.) and 2227.5 g of water, and a solution (B) composed of 64.2 g of Al2(SO4)3.14 to 18H2O (special reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.), 369.2 g of tetrapropylammonium bromide, 152.1 g of H2SO4 (97% by mass), 326.6 g of NaCl, and 2975.7 g of water were prepared independently.

Subsequently, the solution (B) was added gradually to the solution (A) while the solution (A) was continuously stirred at room temperature. The resultant mixture was stirred vigorously for 15 minutes using a mixer, thereby breaking up the gel and forming a uniform fine milky state.

Then, this mixture was placed in a stainless steel autoclave, and a crystallization operation was performed under conditions including a temperature of 165° C., a reaction time of 72 hours, a stirring rate of 100 rpm, and under self-generated pressure. After the crystallization operation was completed, the resultant product was filtered, the solid product was recovered, and the washing and filtering of the solid product was repeated 5 times using approximately 5 liters of deionized water. The solid material obtained by the filtering was dried at 120° C., and was then baked under a stream of air at a high temperature of 550° C. for 3 hours.

From a result of X-ray diffraction analysis (apparatus model: Rigaku RINT-2500V) on the resultant baked product, it was confirmed that the product had a MEI structure. Furthermore, from fluorescent X-ray analysis (apparatus model: Rigaku ZSX101e), it was revealed that a SiO2/Al2O3 ratio (molar ratio) was 64.8. In addition, based on these results, the amount of aluminum element incorporated in the lattice framework was calculated as 1.32% by mass.

A 30% by mass aqueous solution of ammonium nitrate was added to the obtained baked product in a ratio of 5 mL of the aqueous solution per 1 g of the baked product, the resultant mixture was heated at 100° C. while being stirred for 2 hours, and then the mixture was filtered and washed with water. This operation was repeated 4 times, and then the product was dried for 3 hours at 120° C., thereby obtaining an ammonium-type MFI zeolite. Subsequently, the product was baked for 3 hours at 780° C., thereby obtaining a proton-type MFI zeolite.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons patent application.
###
monitor keywords

Browse recent Jx Nippon Oil & Energy Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons or other areas of interest.
###


Previous Patent Application:
Catalyst for a hydrogenation dewaxing process and method for manufacturing same
Next Patent Application:
Process for oligomerizing olefins
Industry Class:
Chemistry of hydrocarbon compounds
Thank you for viewing the Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.65175 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7169
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20130030232 A1
Publish Date
01/31/2013
Document #
13522867
File Date
01/20/2011
USPTO Class
585476
Other USPTO Classes
502 67
International Class
/
Drawings
0


Your Message Here(14K)


Hydrocarbon
Silica
Zeolite
Crystallin


Follow us on Twitter
twitter icon@FreshPatents

Jx Nippon Oil & Energy Corporation

Browse recent Jx Nippon Oil & Energy Corporation patents

Chemistry Of Hydrocarbon Compounds   Aromatic Compound Synthesis   By Ring Opening, Removal, Degradation, Or Shift On Chain Or Other Ring