FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: November 16 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons

last patentdownload pdfdownload imgimage previewnext patent


20130030232 patent thumbnailZoom

Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons


A catalyst is provided for production of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst contains crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having a 10-membered ring structure.
Related Terms: Hydrocarbon Silica Zeolite Crystallin

USPTO Applicaton #: #20130030232 - Class: 585476 (USPTO) - 01/31/13 - Class 585 
Chemistry Of Hydrocarbon Compounds > Aromatic Compound Synthesis >By Ring Opening, Removal, Degradation, Or Shift On Chain Or Other Ring

Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130030232, Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to a catalyst for producing monocyclic aromatic hydrocarbons and a method of producing monocyclic aromatic hydrocarbons, which are capable of producing monocyclic aromatic hydrocarbons from oil containing a large amount of polycyclic aromatic hydrocarbons.

Priority is claimed on Japanese Patent Application No. 2010-010262, filed Jan. 20, 2010, the content of which is incorporated herein by reference.

BACKGROUND ART

Light cycle oil (hereinafter, referred to as “LCO”), which is cracked light oil produced by a fluidized catalytic cracking, contains a large amount of polycyclic aromatic hydrocarbons, and has been used as light oil or heavy oil. However, in recent years, investigations have been conducted to obtain, from LCO, monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 (such as benzene, toluene, xylene and ethylbenzene), which may be used as high-octane gasoline base materials or petrochemical raw materials, and offer significant added value.

For example, Patent Document 1 to Patent Document 3 disclose methods of producing monocyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons contained in large amounts within LCO and the like by using zeolite catalysts.

In addition, as a method of producing monocyclic aromatic hydrocarbons through reaction using zeolite catalysts, Patent Document 4 discloses a method of producing monocyclic aromatic hydrocarbons from aromatic compounds having a carbon number of 9 or more by using beta-type zeolite, which has a 12-membered ring structure and a large pore size, as a catalyst.

Patent Document 5 discloses a method of producing monocyclic aromatic hydrocarbons from paraffin-based hydrocarbons having a carbon number of 2 to 12 by using beta-type zeolite as a catalyst.

CITATION LIST Patent Document

[Patent Document 1] Japanese Unexamined Patent Application, First publication No. H3-2128 [Patent Document 2] Japanese Unexamined Patent Application, First publication No. H3-52993 [Patent Document 3] Japanese Unexamined Patent Application, First publication No. H3-26791 [Patent Document 4] Published Japanese Translation No. H4-504577 of the PCT International Publication [Patent Document 5] Japanese Unexamined Patent Application, First publication No. H2-184517

DISCLOSURE OF INVENTION Technical Problem

However, in the methods disclosed in Patent Document 1 to Patent Document 3, the yields of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 have not been entirely satisfactory. In addition, the methods disclosed in Patent Document 4 and Patent Document 5 are not methods of obtaining both monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower.

An object of the invention is to provide a catalyst for production of monocyclic aromatic hydrocarbons and a method of producing monocyclic aromatic hydrocarbons, which are capable of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock containing polycyclic aromatic hydrocarbons with high yield.

Solution to Problem

(1) According to an embodiment of the invention, a catalyst is provided for production of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst contains crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having 10-membered ring structure.

(2) The catalyst for production of monocyclic aromatic hydrocarbons according to (1), wherein in the crystalline aluminosilicate, a mass ratio of the large-pore zeolite to the intermediate-pore zeolite (large-pore zeolite/intermediate-pore zeolite) is preferably 2/98 to 50/50

(3) The catalyst for production of monocyclic aromatic hydrocarbons according to (1) or (2), wherein the large-pore zeolite is preferably a zeolite of any type selected from a BEA type, an FAU type, and an MOR type.

(4) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (3), wherein the large-pore zeolite is preferably BEA-type zeolite.

(5) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (4), wherein the intermediate-pore zeolite is preferably MFI-type zeolite.

(6) The catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (5), wherein the catalyst preferably further contain phosphorus.

(7) According to another embodiment of the invention, a method is provided of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8. The method includes bringing feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower into contact with the catalyst for production of monocyclic aromatic hydrocarbons according to any one of (1) to (6).

(8) The method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 according to (7), wherein as the feedstock, light cycle oil produced by a fluidized catalytic cracking is preferably used.

(9) The method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 according to (7) or (8), wherein the feedstock is preferably brought into contact with the catalyst for production of monocyclic aromatic hydrocarbons in a fluidized bed reaction unit.

Advantageous Effects of Invention

According to the catalyst for production of monocyclic aromatic hydrocarbons and the method of producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8, monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is preferably produced with high yield from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower.

BEST MODE FOR CARRYING OUT THE INVENTION Catalyst for Production of Monocyclic Aromatic Hydrocarbon

The catalyst for production of monocyclic aromatic hydrocarbons according to this embodiment (hereinafter, abbreviated as “catalyst”) is used for producing monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 (hereinafter, abbreviated as “monocyclic aromatic hydrocarbons”) from feedstock containing polycyclic aromatic hydrocarbons and saturated hydrocarbons, and contains crystalline aluminosilicate.

(Crystalline Aluminosilicate)

In this embodiment, the crystalline aluminosilicate contains large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having a 10-membered ring structure.

As the large-pore zeolite having a 12-membered ring structure, for example, zeolites having a framework type of an AFI type, an ATO type, a BEA type, a CON type, an FAU type, a GME type, an LTL type, an MOR type, an MTW type, and an OFF type is preferably exemplified. Among these, the BEA type, the FAU type, and the MOR type are preferable from an industrially usable aspect, and the BEA type is more preferable because the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is relatively raised.

As the intermediate-pore zeolite having a 10-membered ring structure, for example, zeolites having a framework type of an AEL type, an EUO type, an FER type, an HEU type, an MEL type, an MFI type, an NES type, a TON type, and a WEI type is preferably exemplified. Among these, the MFI type is preferable because the yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 is relatively raised.

In addition, all of the framework type types of the zeolite, which are exemplified in this embodiment, are structure codes based on the definition of the International Zeolite Association.

In addition to the large-pore zeolite, the crystalline aluminosilicate may contain small-pore zeolite having a structure of a 10-membered ring or less, and ultra-large-pore zeolite having a structure of a 14-membered ring or more.

Here, as the small-pore zeolite, for example, zeolites having a framework type of an ANA type, a CHA type, an ERI type, a GIS type, a KFI type, an LTA type, an NAT type, a PAU type, and a YUG type is preferably exemplified.

As the ultra-large-pore zeolite, for example, zeolites having a framework type of a CLO type, and a VPI type is preferably exemplified.

In a case where the catalyst is used as a catalyst for a fixed bed, the content of the crystalline aluminosilicate is preferably 60 to 100% by mass on the basis of 100% by mass of the entirety of the catalyst, and more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass. When the content of the crystalline aluminosilicate is 60% by mass or more, the total yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and the aliphatic hydrocarbons having a carbon number of 3 to 4 is sufficiently raised.

In a case where the catalyst is used as a catalyst for a fluidized bed, the content of the crystalline aluminosilicate is preferably 20 to 60% by mass on the basis of 100% by mass of the entirety of the catalyst, and more preferably 30 to 60% by mass, and still more preferably 35 to 60% by mass. When the content of the crystalline aluminosilicate is 20% by mass or more, the total yield of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and the aliphatic hydrocarbons having a carbon number of 3 to 4 is sufficiently raised. When the content of the crystalline aluminosilicate exceeds 60% by mass, the content of a binder that may be mixed with the catalyst becomes small, and thus may be not appropriate as the catalyst for the fluidized bed.

In the crystalline aluminosilicate, a mass ratio of the large-pore zeolite to the intermediate-pore zeolite (large-pore zeolite/intermediate-pore zeolite) is preferably 2/98 to 50/50, more preferably 5/95 to 50/50, still more preferably 10/90 to 30/70. When the mass ratio is 2/98 or more, an effect of using the large-pore zeolite is sufficiently exhibited, and thus the yield of the monocyclic aromatic hydrocarbons is sufficiently raised. When the mass ratio is 50/50 or less, coking of the feedstock is prevented, and thus the yield of the monocyclic aromatic hydrocarbons is sufficiently raised.

(Other Components)

The catalyst may contain gallium and/or zinc as necessary. When gallium and/or zinc are contained, a generation ratio of the monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 tends to be increased.

As a method used to incorporate gallium into the catalyst, a type in which gallium is incorporated in a lattice framework of the crystalline aluminosilicate (crystalline aluminogallosilicate), a type in which gallium is carried by the crystalline aluminosilicate (gallium-supporting crystalline aluminosilicate), and a type including both of these types is exemplified.

As a method used to incorporate zinc into the catalyst, a type in which zinc is incorporated in a lattice framework of the crystalline aluminosilicate (crystalline aluminozincosilicate), a type in which zinc is carried by the crystalline aluminosilicate (zinc-supporting crystalline aluminosilicate), and a type including both of these types is exemplified.

The crystalline aluminogallosilicate and the crystalline aluminozincosilicate have a structure in which SiO4, AlO4, and GaO4/ZnO4 structures have a tetrahedral coordination in a framework. In addition, the crystalline aluminogallosilicate and the crystalline aluminozincosilicate may be obtained, for example, by gel crystallization through hydrothermal synthesis, by a method in which gallium or zinc is inserted into the lattice framework of the crystalline aluminosilicate, or by a method in which aluminum is inserted into the lattice framework of crystalline gallosilicate or crystalline zincosilicate.

The gallium-supporting crystalline aluminosilicate may be obtained by supporting gallium on a crystalline aluminosilicate using a conventional method such as an ion-exchange method or impregnation method. There are no particular limitations on the gallium source used in these methods, and examples include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.

The zinc-supporting crystalline aluminosilicate may be obtained by supporting zinc on a crystalline aluminosilicate using a known method such as an ion-exchange method or impregnation method. There are no particular limitations on the zinc source used in these methods, and examples include zinc salts such as zinc nitrate and zinc chloride, and zinc oxide.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons or other areas of interest.
###


Previous Patent Application:
Catalyst for a hydrogenation dewaxing process and method for manufacturing same
Next Patent Application:
Process for oligomerizing olefins
Industry Class:
Chemistry of hydrocarbon compounds
Thank you for viewing the Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.63333 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2889
     SHARE
  
           


stats Patent Info
Application #
US 20130030232 A1
Publish Date
01/31/2013
Document #
13522867
File Date
01/20/2011
USPTO Class
585476
Other USPTO Classes
502 67
International Class
/
Drawings
0


Hydrocarbon
Silica
Zeolite
Crystallin


Follow us on Twitter
twitter icon@FreshPatents