FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2013: 3 views
Updated: April 21 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium

last patentdownload pdfdownload imgimage previewnext patent


20130025537 patent thumbnailZoom

Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium


A processing condition inspection method of a damage recovery process for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas includes preparing a substrate having an OH group containing resin film, measuring an initial film thickness of the OH group containing resin film, performing a damage recovery process on the substrate after measuring the initial film thickness, measuring a film thickness of the OH group containing resin film after the damage recovery process, calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process, and determining whether processing conditions of the damage recovery process are appropriate or inappropriate based on the film thickness difference.
Related Terms: Resin Inspect

USPTO Applicaton #: #20130025537 - Class: 118697 (USPTO) - 01/31/13 - Class 118 
Coating Apparatus > Program, Cyclic, Or Time Control >Having Prerecorded Program Medium

Inventors: Reiko Sasahara, Jun Tamura, Shigeru Tahara

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130025537, Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a divisional application of pending U.S. application Ser. No. 12/326,507, filed Dec. 2, 2008, the entire contents of which is incorporated herein by reference. U.S. application Ser. No. 12/326,507 claims the benefit of priority under 119(e) of U.S. Provisional Application No. 61/082,054, filed on Jul. 18, 2008 and U.S. Provisional Application No. 61/034,510, filed on Mar. 7, 2008, and also claims the benefit of priority to Japanese Patent Application No. 2007-312562, filed on Dec. 3, 2007 and Japanese Patent Application No. 2008-147701, filed on Jun. 5, 2008.

FIELD OF THE INVENTION

The present invention relates to a processing condition inspection method and a processing condition optimization method of a damage recovery process for a film, e.g., a low dielectric film serving as an interlayer insulating film formed by a damascene method in a semiconductor device, having OH groups generated by etching damages or ashing damages, a damage recovering system and a storage medium.

BACKGROUND OF THE INVENTION

In a semiconductor device manufacturing process, a dual damascene method is widely used to form a wiring groove or a contact hole (see, e.g., Patent Document 1).

Meanwhile, as semiconductor devices are miniaturized, a parasitic capacitance of an interlayer insulating film has become an important factor to improve wiring performance. The interlayer insulating film employs a low dielectric constant film (low-k film) made of a low-k material. Further, the low-k film is generally made of a material having end groups of alkyl groups such as methyl groups.

However, in the aforementioned conventional damascene process, the low-k film is damaged during an etching process or a resist film removing process (ashing process). This damage increases the dielectric constant of the low-k film, and decreases effects obtained by using the low-k film as the interlayer insulating film.

As a technique for recovering such damage, Patent Document 2 discloses a method for performing a silylation process after etching or removal of the resist film. The silylation process is performed to reform a damaged surface portion having end groups of OH groups by using a silylation agent such that the OH end groups can be replaced by alkyl groups such as methyl groups.

In order to apply the damage recovery process to a mass production system, it is required to check whether the apparatus is normal or not by inspecting processing conditions in a chamber set-up of the silylation processing apparatus or a daily check. Currently, in order to inspect the processing conditions, etching and ashing processes are performed on a wafer having a low-k film and a silylation process is performed thereon to prepare a sample. Then, a dilute hydrofluoric acid treatment is performed on the sample, wherein CDs or film thicknesses t are measured before and after the dilute hydrofluoric acid treatment to obtain ΔCD or Δt, thereby inspecting the processing conditions.

However, when the processing conditions are inspected by the above-described technique, the sample needs to be prepared by performing etching and ashing before the silylation process. Therefore, the sample preparation time is required and, also, the processing conditions related only to the silylation processing apparatus cannot be inspected. In other words, even if ΔCD or Δt is abnormal, it is not possible to determine whether the problem is related to the silylation process or to etching/ashing process.

Further, even if silylation conditions such as a gas concentration vary, ΔCD or Δt obtained after the dilute hydrofluoric acid treatment is hardly changed. Furthermore, even if the same ΔCD or Δt is obtained after the dilute hydrofluoric acid treatment on different samples, these samples often reveal different electrical characteristics. Namely, the processing conditions of the silylation process can not verified reliably.

[Patent Document 1] Japanese Patent Laid-open Publication No. 2002-083869

[Patent Document 2] Japanese Patent Laid-open Publication No. 2006-049798

SUMMARY

OF THE INVENTION

In view of the above, the present invention provides a processing condition inspection method and a processing condition optimization method of a damage recovery process, capable of inspecting processing conditions only by a damage recovery process and precisely detecting abnormality of the processing conditions, and a processing condition optimization method.

Further, the present invention provides a damage recovering system capable of executing the above methods and a storage medium storing a program for implementing the above methods.

In accordance with a first aspect of the present invention, there is provided a processing condition inspection method of a damage recovery process for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas, comprising: preparing a substrate having an OH group containing resin film; measuring an initial film thickness of the OH group containing resin film; performing a damage recovery process on the substrate after measuring the initial film thickness; measuring a film thickness of the OH group containing resin film after the damage recovery process; calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process; and determining whether processing conditions of the damage recovery process are appropriate or inappropriate based on the film thickness difference.

In accordance with a second aspect of the present invention, there is provided a processing condition optimization method of a damage recovery process for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas, comprising: preparing a substrate having an OH group containing resin film; measuring an initial film thickness of the OH group containing resin film; performing a damage recovery process on the substrate after measuring the initial film thickness; measuring a film thickness of the OH group containing resin film after the damage recovery process; calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process; and adjusting processing conditions such that the film thickness difference of the OH group containing resin film before and after the damage recovery process has a value corresponding to optimal processing conditions based on previously obtained data for a relationship between the processing conditions and the film thickness difference.

In the first and second aspects, the film having the OH groups generated by the damages may be a low-k interlayer insulating film. Further, the OH group containing resin film may be an OH group containing photoresist film. In this case, preferably, the OH group containing photoresist film is a KrF resist film. Further, the film thickness of the OH group containing resin film after the damage recovery process may be larger than the initial film thickness due to reaction of the processing gas. Further, the damage recovery process may be performed by a silylation process using a silylation agent as a processing gas. Further, the predetermined process causing the damages may be etching and/or ashing.

In the second aspect, when the damage recovery process is performed by a silylation process using a silylation agent as a processing gas, preferably, the silylation process is performed at a temperature of 120 to 350° C. Further, preferably, the silylation process is performed at a processing gas pressure of 1 to 50 Torr (133 to 6666 Pa).

In accordance with a third aspect of the present invention, there is provided a damage recovering system comprising: a damage recovering apparatus for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas; a film thickness measurement device for measuring a film thickness of a predetermined film; and a control unit for controlling operations of the system, the operations including loading a substrate having an OH group containing resin film into the film thickness measurement device, measuring an initial film thickness of the OH group containing resin film, performing a damage recovery process on the substrate in the damage recovering apparatus after measuring the initial film thickness, measuring a film thickness of the OH group containing resin film in the film thickness measurement device after the damage recovery process, calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process, and determining whether processing conditions of the damage recovery process are appropriate or inappropriate based on the film thickness difference.

In accordance with a fourth aspect of the present invention, there is provided a damage recovering system comprising: a damage recovering apparatus for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas; a film thickness measurement device for measuring a film thickness of a predetermined film; and a control unit for controlling operations of the system, the operations including loading a substrate having an OH group containing resin film into the film thickness measurement device, measuring an initial film thickness of the OH group containing resin film, performing a damage recovery process on the substrate in the damage recovering apparatus after measuring the initial film thickness, measuring a film thickness of the OH group containing resin film in the film thickness measurement device after the damage recovery process, calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process, and adjusting processing conditions such that the film thickness difference of the OH group containing resin film before and after the damage recovery process has a value corresponding to optimal processing conditions based on previously obtained data for a relationship between the processing conditions and the film thickness difference.

In accordance with a fifth aspect of the present invention, there is provided a computer-readable storage medium storing a program for controlling a damage recovering system including a damage recovering apparatus for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas and a film thickness measurement device for measuring a film thickness of a predetermined film, wherein the program, when executed, controls the damage recovering system to perform a processing condition inspection method of a damage recovery process, the method including: preparing a substrate having an OH group containing resin film; measuring an initial film thickness of the OH group containing resin film; performing a damage recovery process on the substrate after measuring the initial film thickness; measuring a film thickness of the OH group containing resin film after the damage recovery process; calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process; and determining whether processing conditions of the damage recovery process are appropriate or inappropriate based on the film thickness difference.

In accordance with a sixth aspect of the present invention, there is provided a computer-readable storage medium storing a program for controlling a damage recovering system including a damage recovering apparatus for reforming a film having OH groups generated by damages from a predetermined process by using a processing gas and a film thickness measurement device for measuring a film thickness of a predetermined film, wherein the program, when executed, controls the damage recovering system to perform a processing condition inspection method of a damage recovery process, the method including: preparing a substrate having an OH group containing resin film; measuring an initial film thickness of the OH group containing resin film; performing a damage recovery process on the substrate after measuring the initial film thickness; measuring a film thickness of the OH group containing resin film after the damage recovery process; calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process; and adjusting processing conditions such that the film thickness difference of the OH group containing resin film before and after the damage recovery process has a value corresponding to optimal processing conditions based on previously obtained data for a relationship between the processing conditions and the film thickness difference. The present inventors carried out repeated examination based on the fact that the damages inflicted on the low-k film by etching or ashing cause generation of OH groups, and a damage recovery process, for example, a silylation process, is performed to reform a portion having the OH groups. As a result, they have found that the processing conditions can be inspected simply and precisely by performing the damage recovery process on a substrate having an OH group containing resin film and calculating a film thickness difference of the OH group containing resin film before and after the damage recovery process before a damage recovery process is performed on an actual substrate.

Namely, since the damage recovery process is performed on the substrate having the OH group containing resin film, a damage causing process such as etching, ashing and the like is not required before the damage recovery process. Accordingly, the sample preparation process becomes simple and, also, the processing conditions can be inspected only by the damage recovery process. Moreover, the film thickness of the OH group containing resin film changes with high sensitivity in response to a change in the processing conditions. Therefore, the processing conditions can be inspected simply and precisely.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium or other areas of interest.
###


Previous Patent Application:
Apparatus for precursor delivery system for irradiation beam instruments
Next Patent Application:
Methods and apparatus for deposition processes
Industry Class:
Coating apparatus
Thank you for viewing the Processing condition inspection and optimization method of damage recovery process, damage recovering system and storage medium patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.5346 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m -g2-0.2342
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130025537 A1
Publish Date
01/31/2013
Document #
13632770
File Date
10/01/2012
USPTO Class
118697
Other USPTO Classes
International Class
23C16/52
Drawings
12


Resin
Inspect


Follow us on Twitter
twitter icon@FreshPatents