FreshPatents.com Logo
stats FreshPatents Stats
8 views for this patent on FreshPatents.com
2013: 8 views
Updated: April 21 2014
Browse: Google patents
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Wearable computing device with indirect bone-conduction speaker

last patentdownload pdfdownload imgimage previewnext patent


20130022220 patent thumbnailZoom

Wearable computing device with indirect bone-conduction speaker


Exemplary wearable computing systems may include a head-mounted display that is configured to provide indirect bone-conduction audio. For example, an exemplary head-mounted display may include at least one vibration transducer that is configured to vibrate at least a portion of the head-mounted display based on the audio signal. The vibration transducer is configured such that when the head-mounted display is worn, the vibration transducer vibrates the head-mounted display without directly vibrating a wearer. However, the head-mounted display structure vibrationally couples to a bone structure of the wearer, such that vibrations from the vibration transducer may be indirectly transferred to the wearer's bone structure.
Related Terms: Wearable Computing Audio Transducer Computing Device Wearable

Google Inc. - Browse recent Google patents - Mountain View, CA, US
USPTO Applicaton #: #20130022220 - Class: 381151 (USPTO) - 01/24/13 - Class 381 
Electrical Audio Signal Processing Systems And Devices > Electro-acoustic Audio Transducer >Body Contact Wave Transfer (e.g., Bone Conduction Earphone, Larynx Microphone)

Inventors: Jianchun Dong, Liang-yu Tom Chi, Mitchell Heinrich, Leng Ooi

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130022220, Wearable computing device with indirect bone-conduction speaker.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND

Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.

Computing devices such as personal computers, laptop computers, tablet computers, cellular phones, and countless types of Internet-capable devices are increasingly prevalent in numerous aspects of modern life. Over time, the manner in which these devices are providing information to users is becoming more intelligent, more efficient, more intuitive, and/or less obtrusive.

The trend toward miniaturization of computing hardware, peripherals, as well as of sensors, detectors, and image and audio processors, among other technologies, has helped open up a field sometimes referred to as “wearable computing.” In the area of image and visual processing and production, in particular, it has become possible to consider wearable displays that place a very small image display element close enough to a wearer\'s (or user\'s) eye(s) such that the displayed image fills or nearly fills the field of view, and appears as a normal sized image, such as might be displayed on a traditional image display device. The relevant technology may be referred to as “near-eye displays.”

Near-eye displays are fundamental components of wearable displays, also sometimes called “head-mounted displays” (HMDs). A head-mounted display places a graphic display or displays close to one or both eyes of a wearer. To generate the images on a display, a computer processing system may be used. Such displays may occupy a wearer\'s entire field of view, or only occupy part of wearer\'s field of view. Further, head-mounted displays may be as small as a pair of glasses or as large as a helmet.

SUMMARY

In one aspect, an exemplary wearable-computing system may include: (a) one or more optical elements; (b) a support structure comprising a front section and at least one side section, wherein the support structure is configured to support the one or more optical elements; (c) an audio interface configured to receive an audio signal; and (d) at least one vibration transducer located on the at least one side section, wherein the at least one vibration transducer is configured to vibrate at least a portion of the support structure based on the audio signal. In this exemplary wearable-computing system, the vibration transducer is configured such that when the support structure is worn, the vibration transducer vibrates the support structure without directly vibrating a wearer. Further, the support structure is configured such that when worn, the support structure vibrationally couples to a bone structure of the wearer.

In another aspect, an exemplary wearable-computing system may include: (a) a support structure comprising a front section and at least one side section, wherein the support structure is configured to support the one or more optical elements; (b) a means for receiving an audio signal; and (c) a means for vibrating at least a portion of the support structure based on the audio signal, wherein the means for vibrating is located on the at least one side section. In this exemplary wearable-computing system, the means for vibrating is configured such that when the support structure is worn, the means for vibrating vibrates the support structure without directly vibrating a wearer. Further, the support structure is configured such that when worn, the support structure vibrationally couples to a bone structure of the wearer.

These as well as other aspects, advantages, and alternatives, will become apparent to those of ordinary skill in the art by reading the following detailed description, with reference where appropriate to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a wearable computing system according to an exemplary embodiment.

FIG. 2 illustrates an alternate view of the wearable computing system of FIG. 1.

FIG. 3 illustrates an exemplary schematic drawing of a wearable computing system.

FIG. 4 is a simplified illustration of a head-mounted display configured for indirect bone-conduction audio, according to an exemplary embodiment.

FIG. 5 is another block diagram illustrating an HMD configured for indirect bone-conduction audio, according to an exemplary embodiment.

FIG. 6 is another block diagram illustrating an HMD configured for indirect bone-conduction audio, according to an exemplary embodiment.

DETAILED DESCRIPTION

Exemplary methods and systems are described herein. It should be understood that the word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or feature described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or features. The exemplary embodiments described herein are not meant to be limiting. It will be readily understood that certain aspects of the disclosed systems and methods can be arranged and combined in a wide variety of different configurations, all of which are contemplated herein.

I. Overview

The disclosure generally involves a wearable computing system with a head-mounted display (HMD), and in particular, an HMD having at least one vibration transducer that functions as a speaker. An exemplary HMD may employ vibration transducers that are commonly referred to as bone-conduction transducers. However, standard applications of bone-conduction transducers involve direct transfer of sound to the inner ear by attaching the transducer directly to the bone (or a pad that is adjacent to the bone). An exemplary HMD, on the other hand, may include a bone-conduction transducer (or another type of vibration transducer) that transfers sound to the wearer\'s ear via “indirect bone conduction.”

More specifically, an exemplary HMD may include a vibration transducer that does not vibrationally couple to wearer\'s bone structure (e.g., a vibration transducer that is located so as to avoid substantial contact with the wearer when the HMD is worn). Instead, the vibration transducer is configured to vibrate the frame of the HMD. The HMD frame is in turn vibrationally coupled to the wearer\'s bone structure. As such, the HMD frame transfers vibration to the wearer\'s bone structure such that sound is perceived in the wearer\'s inner ear. In this arrangement, the vibration transducer does not directly vibrate the wearer, and thus may be said to function as an “indirect” bone conduction speaker.

In an exemplary embodiment, the vibration transducer may be placed at a location on the HMD that does not contact the wearer. For example, on a glasses-style HMD, a vibration transducer may be located on a side-arm of the HMD, near where the side-arm connects to the front of the HMD. Further, in an exemplary embodiment, the HMD may be configured such that when worn, there is space (e.g., air) between the portion of the HMD where the vibration transducer is located and the wearer. As such, the portion of the HMD that contacts and vibrationally couples to the wearer may be located away from the vibration transducer.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Wearable computing device with indirect bone-conduction speaker patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Wearable computing device with indirect bone-conduction speaker or other areas of interest.
###


Previous Patent Application:
Voice coil speaker
Next Patent Application:
Shaping sound responsive to speaker orientation
Industry Class:
Electrical audio signal processing systems and devices
Thank you for viewing the Wearable computing device with indirect bone-conduction speaker patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.50116 seconds


Other interesting Freshpatents.com categories:
Nokia , SAP , Intel , NIKE , -g2-0.2133
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130022220 A1
Publish Date
01/24/2013
Document #
13269935
File Date
10/10/2011
USPTO Class
381151
Other USPTO Classes
International Class
04R1/00
Drawings
6


Wearable Computing
Audio
Transducer
Computing Device
Wearable


Follow us on Twitter
twitter icon@FreshPatents