FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2013: 2 views
Updated: November 16 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Foldable accommodating intraocular lens

last patentdownload pdfdownload imgimage previewnext patent

20130018461 patent thumbnailZoom

Foldable accommodating intraocular lens


A foldable accommodating intraocular lens (AIOL) for implantation in a human eye, the AIOL including a hollow flattened sphere shaped housing including a shape memory optical element and a tubular casing mounted on the housing for reciprocation relative thereto for selectively compressing the shape memory optical element between a non-compressed shape and a compressed shape whereby the AIOL has a continuously variable Diopter strength
Related Terms: Elective Implant Implantation Intraocular Intraocular Lens Ocular Optic Flatten Ocular Lens Optical

USPTO Applicaton #: #20130018461 - Class: 623 637 (USPTO) - 01/17/13 - Class 623 


Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Eye Prosthesis (e.g., Lens Or Corneal Implant, Or Artificial Eye, Etc.) >Intraocular Lens >Focal Power Of Lens Can Be Continuously Varied By Movement Of Body Part (e.g., Head, Eyes, Ciliary Muscles, Etc.)

Inventors: Joshua Ben Nun

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130018461, Foldable accommodating intraocular lens.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The invention pertains to accommodating intraocular lens assemblies.

BACKGROUND OF THE INVENTION

Commonly owned PCT International Application No. PCT/IL02/00693 entitled Accommodating Lens Assembly and published on Feb. 27, 2003 under PCT International Publication No. WO 03/015669 illustrates and describes accommodating intraocular lens (hereinafter AIOL) assemblies, the contents of which are incorporated herein by reference. The AIOL assemblies each include a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus at at least two spaced apart stationary anchor points so that it may act as a reference plane for an AIOL of continuously variable Diopter strength affected by a human eye\'s capsular diaphragm under control of its sphincter-like ciliary body and acting thereagainst from a posterior direction. The haptics systems include a rigid planar haptics plate with a telescoping haptics member for sliding extension. The haptics plate and the haptics member are preferably self-anchoring as illustrated and described in commonly owned PCT International Application No. PCT/IL02/00128 entitled Intraocular Lens and published on Aug. 29, 2002 under PCT International Publication No. WO 02/065951, the contents of which are incorporated herein by reference.

Commonly owned PCT International Application No. PCT/IL2005/000456 entitled Accommodating Intraocular Lens Assemblies and Accommodation Measurement Implant and published on Nov. 10, 2005 under PCT International Publication No. WO 2005/104994 illustrates and describes AIOL assemblies enabling post implantation in situ manual selective displacement of an AIOL along a human eye\'s visual axis relative to at least two spaced apart stationary anchor points to a desired position to ensure that an AIOL assumes a non-compressed state in a human eye\'s constricted ciliary body state. Such in situ manual selective displacement can be effected post implantation to correct for capsular contraction which is a natural reaction which typically develops over a few months following extraction of the contents of a human eye\'s natural crystalline lens, and also a subject\'s changing eyesight overtime with minimal clinical intervention. Such in situ manual selective displacement can be achieved as follows: First, a discrete haptics system for retaining a discrete AIOL which is manually displaceable relative thereto. And second, a haptics system with at least two haptics having radiation sensitive regions capable of undergoing plastic deformation for in situ manual displacement of an integrally formed AIOL.

Commonly owned PCT International Application No. PCT/IL2005/001069 entitled Accommodating Intraocular Lens (AIOL), and AIOL Assemblies Including Same illustrates and describes an AIOL including a biasing mechanism for elastically deforming an elastically deformable shape memory disk-like optical element for affording the AIOL a natural positive Diopter strength for near vision. The AIOL is intended to be implanted in a human eye such that relaxation of its ciliary body causes its capsular diaphragm to apply an external force for overcoming the biasing mechanism to reduce the AIOL\'s natural positive Diopter strength for distance vision.

Other AIOLs are illustrated and described in U.S. Pat. No. 4,254,509 to Tennant, U.S. Pat. No. 4,409,691 to Levy, U.S. Pat. No. 4,888,012 to Horn et al., U.S. Pat. No. 4,892,543 to Turley, U.S. Pat. No. 4,932,966 to Christie et al., U.S. Pat. No. 5,476,514 to Cumming, U.S. Pat. No. 5,489,302 to Skottun, U.S. Pat. No. 5,496,366 to Cumming, U.S. Pat. No. 5,522,891 to Klaas, U.S. Pat. No. 5,674,282 to Cumming, U.S. Pat. No. 6,117,171 to Skottun, U.S. Pat. No. 6,197,059 to Cumming, U.S. Pat. No. 6,299,641 to Woods, U.S. Pat. No. 6,342,073 to Cumming et al., U.S. Pat. No. 6,387,126 to Cumming, U.S. Pat. No. 6,406,494 to Laguette et al., U.S. Pat. No. 6,423,094 to Sarfarazi, U.S. Pat. No. 6,443,985 to Woods, U.S. Pat. No. 6,464,725 to Skotton, U.S. Pat. No. 6,494,911 to Cumming, U.S. Pat. No. 6,503,276 to Lang et al., U.S. Pat. No. 6,638,306 to Cumming, U.S. Pat. No. 6,645,245 to Preussner, U.S. patent Application Publication No. U.S. 2004/0169816 to Esch, and EP 1 321 112.

SUMMARY

OF THE INVENTION

One aspect of the present invention is directed towards accommodating intraocular (AIOL) assemblies each including at least one shape memory optical element resiliently elastically deformable between a non-compressed shape with a first Diopter strength and a compressed shape with a second Diopter strength different than its first Diopter strength such that an AIOL has a continuously variable Diopter strength between a minimum Diopter strength for distance vision purposes and a maximum Diopter strength for near vision purposes. The AIOL assemblies are intended for in situ manual selective displacement of an AIOL along a human eye\'s visual axis relative to stationary anchor points after implantation for enabling accurate AIOL deployment to take full advantage of the reciprocal movement of a human eye\'s capsular diaphragm between its constricted ciliary body position and its relaxed ciliary body position. Axial displacement may be over a continuous range in a similar manner to aforesaid WO 2005/104994 or alternatively at discrete axial stopping positions typically from about 100 μm to about 300 μm apart. Stepwise axial displacement is preferably enabled by a so-called “push and twist” bayonet arrangement similar to a conventional light bulb fitting having a single stopping position. The AIOL assemblies each include a haptics system also suitable for self-anchoring implantation of a fixed Diopter strength IOL in a human eye as opposed to an AIOL having a variable Diopter strength.

Another aspect of the present invention is directed towards AMU which lend themselves to be at least partially folded under reasonable forces as can be applied using conventional ophthalmic surgical tools, for example, tweezers, for facilitating insertion into a human eye through a relatively small incision. The AIOLs can be provided as discrete components for use with discrete haptics systems for enabling aforesaid in situ axial displacement. The discrete AIOLs are provided with typically two or more manipulation apertures accessible from an anterior side for receiving the tip of a handheld manipulation tool for enabling in situ manipulation. The manipulation apertures may be in the form of peripheral disposed manipulation rings, blind manipulation notches, and the like.

Alternatively, the AIOLs can be integrally formed with a haptics system including at least two elongated haptics having radiation sensitive regions capable of undergoing plastic deformation for enabling aforesaid in situ axial displacement.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:

FIG. 1 is a cross section view of an anterior part of a human eye in its natural near vision condition in an axial plane of the human body;

FIG. 2 is a cross section view of an anterior part of a human eye in its natural distance vision condition in an axial plane of the human body;

FIG. 3 is a pictorial view of a disassembled “push and twist” AIOL assembly including a discrete haptics system and a discrete AIOL with a flattened spherical shaped housing a shape memory optical element;

FIG. 4 is a close-up front view of a bifurcated attachment plate of FIG. 3\'s haptics system;

FIG. 5 is a pictorial view of a stepped track of FIG. 3\'s haptics system;

FIG. 6 is a pictorial view of a FIG. 3\'s AIOL being folded by tweezers for insertion into a human eye through a small incision;

FIG. 7 is a pictorial view of a unitary AIOL assembly including a haptics system integrally formed with FIG. 3\'s AIOL;

FIG. 8 is a longitudinal cross section view of the FIG. 3\'s AIOL in its non-compressed state along line B-B in FIG. 3;

FIG. 9 is a longitudinal cross section of FIG. 3\'s AIOL in its compressed state along line B-B in FIG. 3;

FIG. 10 is a side view of FIG. 3\'s AIOL assembly prior to assembly;

FIG. 11 is a side view of FIG. 3\'s AIOL assembly at its most posterior axial stopping position;

FIG. 12 is a side view of FIG. 3\'s AIOL assembly at an intermediate axial stopping position;

FIG. 13 is a side view of FIG. 3\'s AIOL assembly at its most anterior axial stopping position;

FIG. 14 is a cross section view of an anterior view of a human eye in an axial plane of the human body implanted with FIG. 3\'s AIOL assembly in an initial position along the human eye\'s visual axis;

FIG. 15 is a cross section view of an anterior view of a human eye in an axial plane of the human body implanted with FIG. 3\'s AIOL assembly at a subsequent position along the human eye\'s visual axis to compensate for capsular contraction;

FIG. 16 is a pictorial view of a disassembled “push and twist” AIOL assembly including a discrete haptics system and a discrete dual bellows-like AIOL;

FIG. 17 is a pictorial view of a unitary AIOL assembly including a haptics system integrally formed with FIG. 16\'s dual bellows-like AIOL;

FIG. 18 is a longitudinal cross section view of FIG. 16\'s dual bellows-like AIOL in its non-compressed state;

FIG. 19 is a longitudinal cross section of FIG. 16\'s dual bellows-like AIOL in its compressed state;

FIG. 20 is a cross section view of an anterior view of a human eye in its contracted ciliary body state in an axial plane of the human body implanted with FIG. 16\'s AIOL assembly;

FIG. 21 is a cross section view of an anterior view of a human eye in its relaxed ciliary body state in an axial plane of the human body implanted with FIG. 16\'s AIOL assembly;

FIG. 22 is an exploded view of a still yet another discrete AIOL for use in a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus;

FIG. 23 is a longitudinal cross section view of FIG. 22\'s AIOL in its non-compressed state;

FIG. 24 is a longitudinal cross section view of FIG. 22\'s AIOL in its compressed state;

FIG. 25 is a side view of a still yet another discrete AIOL in its non-compressed state for use in a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus;

FIG. 26 is a side view of FIG. 25\'s AIOL in its compressed state;

FIG. 27 is a cross section view of FIG. 25\'s AIOL in its non-compressed state;

FIG. 28 is a cross section view of FIG. 25\'s AIOL in its compressed state;

FIG. 29 is longitudinal cross section view of a still yet another discrete AIOL in its non-compressed state for use in a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus;

FIG. 30 is a longitudinal cross section of FIG. 29\'s AIOL in its compressed state;

FIG. 31 is a longitudinal cross section of still yet another discrete AIOL in its non-compressed state for use in a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus;

FIG. 32 is a longitudinal cross section of a still yet another discrete AIOL in its non-compressed state for use in a haptics system adapted to be securely fixed in a human eye\'s annular ciliary sulcus;

FIG. 33 is a pictorial view of a disassembled “push and twist” AIOL assembly in accordance with another “push and twist” bayonet arrangement;

FIG. 34 is a pictorial view of a disassembled “push and twist” AIOL assembly in accordance with yet another “push and twist” bayonet arrangement; and

FIG. 35 is a pictorial view of a disassembled AIOL assembly with a screw thread arrangement for enabling in situ manual selective axial displacement of an AIOL along a human eye\'s visual axis.

DETAILED DESCRIPTION

OF PREFERRED EMBODIMENTS OF THE PRESENT INVENTION

FIGS. 1 and 2 are cross section views of an anterior part of a human eye 10 having a visual axis VA in its natural near and distance vision conditions, respectively, in an axial plane of the human body. The human eye 10 has a cornea 11 peripherally connected to a spherical exterior body made of tough connective tissue known as the sclera 12 at an annular sclero-corneal juncture 13. An iris 14 inwardly extends into the human eye 10 from its root 16 at the sclero-corneal juncture 13 to divide the human eye\'s anterior part into an anterior chamber 17 and a posterior chamber 18. A sphincter-like peripheral structure known as the ciliary body 19 includes ciliary processes housing ciliary muscles 21 fired by parasympathetic nerves. The ciliary muscles 21 are connected to zonular fibers 22 which in turn are peripherally connected to the equatorial edge of a membrane known as the capsular bag 23 with an anterior capsule 24 and a posterior capsule 26 enrobing a natural crystalline lens 27. The iris\'s root 16 and the ciliary body 19 delimit a portion of the interior surface of the sclera 12 at the sclero-corneal juncture 13 known as the ciliary sulcus 28. Remnants of the anterior capsule 24 which may remain after extraction of the natural crystalline lens 27 and the intact posterior capsule 26 are referred to hereinafter as the capsular diaphragm 29. Contraction of the ciliary body 19 allows the lens 27 to thicken to its natural thickness T1 along the visual axis VA for greater positive optical power for near vision (see FIG. 1). Relaxation of the ciliary body 19 tensions the zonular fibers 22 which draws the capsular bag 23 radially outward as shown by arrows A for compressing the lens 27 to shorten its thickness along the visual axis VA to T2<T1 for lower positive optical power for distance vision (see FIG. 2).

FIG. 3 shows a “push and twist” AIOL assembly 31 for self-anchoring in a human eye\'s ciliary sulcus 28 for preferably enabling spectacle free vision over the nominal range of human vision. The AIOL assembly 31 includes a discrete haptics system 32 for selectively retaining a discrete AIOL 33, and a “push and twist” bayonet arrangement 34 for effecting stepwise axial displacement of the AIOL 33 relative to the haptics system 32 and therefore along a human eye\'s visual axis. A handheld manipulation tool 36 with an elongated shaft 37 and an inclined end piece 38 with a tip 38A is employed for assembling the AIOL assembly 31 in situ and for manipulating the AIOL 33 for stepwise axial displacement relative to the haptics system 32.

The haptics system 32 is made from suitable rigid bio-compatible transparent polymer material such as PMMA, and the like. The haptics system 32 has a longitudinal axis 39 intended to be co-directional with a human eye\'s visual axis. The haptics system 32 includes a tubular main body 41 with a diameter D1 in the region of 4 mm-5 mm corresponding to a human eye\'s pupil, and an axial length L1 of 1 mm±0.5 mm along the longitudinal axis 39 (see FIG. 10). The haptics system 32 has a pair of diametrically opposite elongated C-shaped haptics 42 extending from its main body 41 in opposite directions in a plane perpendicular to its longitudinal axis 39. The haptics 42 have a thin profile in the plane perpendicular to the longitudinal axis 39 such that they are sufficiently flexible under reasonable forces as can be applied using conventional ophthalmic surgical tools for encircling around the main body 41 shown by arrow C for facilitating insertion of the haptics system 32 into a human eye through a relatively small incision. FIG. 3 shows a haptics 42 in dashed lines for showing its encircling around the main body 41. The haptics 42 have a wide profile along the longitudinal axis 39 such that they are rigid against a compression force therealong. The haptics\' wide profile preferably tapers from its proximal end 42A adjacent the main body 41 to its distal end 42B remote therefrom and terminating at a bifurcated attachment plate 43.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Foldable accommodating intraocular lens patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Foldable accommodating intraocular lens or other areas of interest.
###


Previous Patent Application:
Pre-loaded iol insertion system
Next Patent Application:
Air-operated speech aid
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Foldable accommodating intraocular lens patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.48814 seconds


Other interesting Freshpatents.com categories:
Software:  Finance AI Databases Development Document Navigation Error

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1629
     SHARE
  
           

Key IP Translations - Patent Translations


stats Patent Info
Application #
US 20130018461 A1
Publish Date
01/17/2013
Document #
13604172
File Date
09/05/2012
USPTO Class
623/637
Other USPTO Classes
International Class
61F2/16
Drawings
17


Elective
Implant
Implantation
Intraocular
Intraocular Lens
Ocular
Optic
Flatten
Ocular Lens
Optical


Follow us on Twitter
twitter icon@FreshPatents