FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Radio model updating

last patentdownload pdfdownload imgimage previewnext patent


20130017842 patent thumbnailZoom

Radio model updating


The subject matter disclosed herein relates to systems, methods, apparatuses, devices, articles, and means for updating radio models. For certain example implementations, a method for one or more server devices may comprise receiving at one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment. At least one radio model that is stored in one or more memories may be updated based, at least in part, on the at least one measurement to produce at least one updated radio model. The at least one radio model and the at least one updated radio model may correspond to the indoor environment. The at least one updated radio model may be transmitted to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. Other example implementations are described herein.
Related Terms: Server

USPTO Applicaton #: #20130017842 - Class: 4554561 (USPTO) - 01/17/13 - Class 455 
Telecommunications > Radiotelephone System >Zoned Or Cellular Telephone System >Location Monitoring

Inventors: Rajarshi Gupta, Ayman Fawzy Naguib, Alok Aggarwal, Saumitra Mohan Das, Vinay Sridhara

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130017842, Radio model updating.

last patentpdficondownload pdfimage previewnext patent

CLAIM OF PRIORITY UNDER 35 U.S.C. §119 and §120

This application is a continuation of U.S. patent application Ser. No. 13/078,644, filed Apr. 1, 2011, and entitled “Radio Model Updating,” which claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 61/320,966, filed 5 Apr. 2010, and entitled “Indoor Navigation with Server Interactions,” which are assigned to the assignee hereof and which are incorporated herein by reference.

BACKGROUND

1. Field

The subject matter disclosed herein relates to radio model updating.

2. Information

Humanity has continually struggled to journey from one point to another. In ancient times, individuals in unfamiliar territory wandered around without guidance, or perhaps they risked asking local inhabitants for directions. People eventually developed maps to provide written guidance for reaching a desired destination. As literacy and the availability of paper became more common, more people gained the ability to use maps during their travels.

Maps began to be available in electronic form during the twentieth century. With the advent of the Internet, people could electronically access maps of many places from all over the globe. Web mapping services could also provide directions from point “A” to point “B”. These directions from web-based mapping services were relatively static. With the invention of satellite-positioning system (SPS) technology and ever-smaller electronic devices, however, so-called turn-by-turn directions could be provided dynamically as travelers journeyed toward their destination.

These electronic maps and web-based mapping services focus on providing directions in particular environments and certain situations. Unfortunately, there are other environments and situations for which they have not been designed. Consequently, there remain a number of areas in which navigational or other location-based services may be improved.

BRIEF DESCRIPTION OF THE FIGURES

Non-limiting and non-exhaustive aspects, features, etc. will be described with reference to the following figures, wherein like reference numerals may refer to like parts throughout the various figures.

FIG. 1 is a schematic block diagram illustrating a mobile device within an example indoor environment in which the mobile device may be provided access to indoor environment characteristics via one or more server devices such that a location-based service may be provided according to an implementation.

FIG. 2 is a schematic diagram of an example indoor environment, within which a mobile device may navigate, that may include multiple obstacles or a multitude of feasible positions for mobile devices according to an implementation.

FIG. 3 is a schematic block diagram illustrating example interactions among a mobile device and one or more server devices, which may include a crowdsourcing server device, according to an implementation.

FIG. 4 is a block diagram of example indoor environment characteristics, which may include a radio model, according to an implementation.

FIG. 5 is a schematic block diagram illustrating example interactions among multiple mobile devices and at least a crowdsourcing server device to provide an updated radio model according to an implementation.

FIG. 6 is a flow diagram illustrating an example method for one or more server devices to update a radio model according to an implementation.

FIG. 7 is a flow diagram illustrating an example method for a mobile device to use an updated radio model according to an implementation.

FIG. 8 is a flow diagram illustrating an example method for a mobile device to participate in updating a radio model according to an implementation.

FIG. 9 is a schematic diagram of at least a portion of an indoor environment in which mobile devices may experience examples of incidents that apparently conflict with a graph, and at least one of these incidents may result in a graph updating operation.

FIG. 10A is a flow diagram illustrating an example method for a mobile device to participate in updating a graph according to an implementation.

FIG. 10B is a flow diagram illustrating an example method for a mobile device to use an updated graph according to an implementation.

FIG. 11 is a flow diagram illustrating an example method for one or more server devices to update a graph according to an implementation.

FIG. 12 is a schematic diagram illustrating an example server device, according to an implementation, that may implement one or more aspects of radio model updating in conjunction with an indoor environment.

FIG. 13 is a schematic diagram illustrating an example mobile device, according to an implementation, that may implement one or more aspects of radio model updating in conjunction with an indoor environment.

SUMMARY

For certain example implementations, a method for one or more server devices may comprise: receiving at one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment; updating at least one radio model that is stored in one or more memories based, at least in part, on the at least one measurement to produce at least one updated radio model, the at least one radio model and the at least one updated radio model corresponding to the indoor environment; and transmitting the at least one updated radio model to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. For certain example implementations, a special purpose computing apparatus for updating a radio model may comprise: at least one memory to store instructions; and one or more processors to execute said instructions to: receive at least one measurement that corresponds to a position of a first mobile device within an indoor environment; update at least one radio model based, at least in part, on the at least one measurement to produce at least one updated radio model, the at least one radio model and the at least one updated radio model corresponding to the indoor environment; and transmit the at least one updated radio model to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. For certain example implementations, a special purpose computing apparatus for updating a radio model may comprise: means for receiving at least one measurement that corresponds to a position of a first mobile device within an indoor environment; means for updating at least one radio model based, at least in part, on the at least one measurement to produce at least one updated radio model, the at least one radio model and the at least one updated radio model corresponding to the indoor environment; and means for transmitting the at least one updated radio model to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. For certain example implementations, an article may comprise: at least one storage medium having stored thereon instructions executable by one or more processors to: receive via one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment; update at least one radio model based, at least in part, on the at least one measurement to produce at least one updated radio model, the at least one radio model and the at least one updated radio model corresponding to the indoor environment; and transmit the at least one updated radio model to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. It should be appreciated, however, that these are merely example implementations and that other implementations are described herein and may be implemented without departing from claimed subject matter.

For certain example implementations, a method for a mobile device may comprise: wirelessly receiving from one or more server devices at least one updated radio model, wherein the at least one updated radio model is updated based, at least in part, on at least one measurement that corresponds to at least one position of one or more other mobile devices within an indoor environment; and performing a positioning operation for the mobile device within the indoor environment using the at least one updated radio model, wherein the at least one updated radio model corresponds to the indoor environment, and the at least one measurement is wirelessly received by the one or more server devices from the one or more other mobile devices. For certain example implementations, a mobile device for using an updated radio model may comprise: at least one memory to store instructions; and one or more processors to execute said instructions to: wirelessly receive from one or more server devices at least one updated radio model, wherein the at least one updated radio model is updated based, at least in part, on at least one measurement that corresponds to at least one position of one or more other mobile devices within an indoor environment; and perform a positioning operation for the mobile device within the indoor environment using the at least one updated radio model, wherein the at least one updated radio model corresponds to the indoor environment, and the at least one measurement is wirelessly received by the one or more server devices from the one or more other mobile devices. For certain example implementations, a mobile device for using an updated radio model may comprise: means for wirelessly receiving from one or more servers at least one updated radio model, wherein the at least one updated radio model is updated based, at least in part, on at least one measurement that corresponds to at least one position of one or more mobile devices within an indoor environment; and means for performing a positioning operation within the indoor environment using the at least one updated radio model, wherein the at least one updated radio model corresponds to the indoor environment, and the at least one measurement is wirelessly received by the one or more servers from the one or more mobile devices. For certain example implementations, an article may comprise: at least one storage medium having stored thereon instructions executable by one or more processors to: wirelessly receive from one or more server devices at least one updated radio model, wherein the at least one updated radio model is updated based, at least in part, on at least one measurement that corresponds to at least one position of one or more other mobile devices within an indoor environment; and perform a positioning operation for a particular mobile device within the indoor environment using the at least one updated radio model, wherein the at least one updated radio model corresponds to the indoor environment, and the at least one measurement is wirelessly received by the one or more server devices from the one or more other mobile devices. It should be appreciated, however, that these are merely example implementations and that other implementations are described herein and may be implemented without departing from claimed subject matter.

DETAILED DESCRIPTION

Reference throughout this Specification to “a feature,” “one feature,” “an example,” “one example,” and so forth means that a particular feature, structure, characteristic, or aspect, etc. that is described in connection with a feature or example may be relevant to at least one feature or example of claimed subject matter. Thus, appearances of a phrase such as “in one example,” “for example,” “in one feature,” “a feature,” “a particular feature,” “in an example implementation,” or “for certain example implementations,” etc. in various places throughout this Specification are not necessarily all referring to the same feature, example, or example implementation. Furthermore, particular features, examples, structures, characteristics, or aspects, etc. may be combined in one or more example devices, example methods, example systems, or other example implementations.

Many indoor environments are sufficiently large, complex, or otherwise difficult to navigate so that navigational services may be beneficial, e.g., to a user of a mobile device. Hence, a user may want a navigational service, which may involve maps or directions, etc., or another location-based service (LBS) to be provided via a mobile device in an indoor area. Unfortunately, in contrast with large-scale, outdoor areas in which maps or mobile device locations may be made available via e.g. satellite imagery or satellite positioning system (SPS) technologies, indoor maps or mobile device locations are often not as readily available. Satellites cannot merely take a picture of interior features of a structure, and SPS signals may be too attenuated for use within a structure.

Location-based services may include positioning, personal vehicle/pedestrian navigation, real-time turn-by-turn directions, or location-based searching (e.g., searching of local points of interest), just to name a few examples. To provide location-based services indoors, one or more local coordinate systems may be established for particular indoor environments. An indoor environment may be referred to as a “location context.” A server device may store and associate identifiers, such as location context identifiers (LCIs), with specific “location contexts.” A location context may include locally-defined areas or other environments such as, for example, particular floors of buildings or other indoor areas that may not be mapped according to a global coordinate system. Location context identifiers may be used as handles for requesting additional information associated with a location context (e.g., for requesting additional information that is laid over or linked to a schematic map of an indoor environment). Such additional information may include, by way of example but not limitation, routes or paths over an indoor map, points of interest that are local or unique to certain location contexts, etc., just to name a couple of examples. However, claimed subject matter is not limited to any particular coordinate system or systems or to any particular location context or identifier thereof. Moreover, a given indoor environment or local context may be associated with at least a portion of at least one local coordinate system, at least a portion of at least one global coordinate system, at least a portion of at least one local coordinate system that may be translated into one or more other local coordinate systems or global coordinate systems, or any combination thereof, etc., just to name a few examples.

A mobile device may use an identifier, such as a location context identifier, to obtain a schematic map of an indoor environment. Location-based data may be overlaid on a schematic map of an indoor environment. Additionally or alternatively, a mobile device may use an identifier to obtain information to be used in a particular application connected to a particular corresponding location context. For example, a mobile device may obtain information descriptive of a particular location context for use in an indoor pedestrian navigation application. Such information may include a schematic map that provides or enables a display of, for example, corridors, rooms, hallways, doors, entry ways, restrooms, or other points of interest of an indoor environment. For an example navigational application, such information may define a routing topology set out in a coordinate system that is local to a particular location context, as distinguishable from a global coordinate system. A mobile device may also use one or more identifiers to obtain point of interest (POI) information. POI information may include, by way of example only, information that describes or identifies particular locations or potential destinations of an indoor environment. Examples of POI information may include, but are not limited to, names of stores, locations of restrooms, names of office inhabitants, purposes of rooms, identifications of stairs or elevators, identifications of points of egress or ingress, or any combination thereof, etc. Use of information that is obtained in response to a request that specifies an identifier, such as a location context identifier, may depend, at least partially, on a position of a mobile device. Unfortunately for users located within indoor environments, as explained further below, performing a positioning operation to estimate a position of a mobile device may be more difficult indoors as compared to outdoors.

As indicated above, electronic mapping or other navigational services in outdoor environments may be effectuated using SPS data or using positioning data acquired via trilateration with multiple cellular base stations or similar fixed transmitting stations. With indoor environments, on the other hand, SPS signals may often be too weak or undetectable. Likewise, there may be too few received signals or an insufficient strength of signals received at an indoor location with regard to signals that are transmitted from terrestrial cellular base stations. Consequently, positioning strategies that are effective in outdoor environments may be inadequate for indoor environments. To combat these problems, indoor positioning for mobile devices may be effectuated at least partly by processing signals transmitted from wireless transmitter devices that are located within an indoor environment. Wireless transmitter devices may include, but are not limited to, wireless transmitters that comport with a Wi-Fi access point (AP) protocol, a Bluetooth protocol, a femtocell protocol, or any combination thereof, etc.

Unfortunately, there are other difficulties with indoor environments. For example, many indoor environments may include walls or other obstacles. Interior obstacles may introduce at least two different difficulties. First, obstacles can block, reflect, attenuate, or otherwise affect wireless transmissions within an indoor environment. Second, obstacles can limit where it is feasible for a mobile device to be located within an indoor environment or how a mobile device may move within an indoor environment. A schematic map may show, by way of example only, locations of obstacles and feasible positions for mobile devices or users of mobile devices within an indoor environment. A schematic map for an indoor environment may therefore be used to facilitate navigation within the indoor environment.

A radio model may additionally facilitate navigation by aiding, for example, a positioning operation of a mobile device within an indoor environment. A positioning operation for a mobile device may, for example, determine at least an estimated position of the mobile device, including, but by way of example only, with respect to a schematic map. By way of example but not limitation, a radio model may link stored patterns of values to positions within an indoor environment or to distances to a wireless transmitter device of an indoor environment. Stored value patterns may comprise or be derived from, by way of example but not limitation, at least one propagation parameter, at least one received signal strength indication/indicator (RSSI), at least one round trip time (RTT), at least one round trip delay (RTD), or any combination thereof, etc. For example, a radio model may include an RSSI value that corresponds to a particular position on a schematic map of an indoor environment. Or a radio model may include an RTT value that corresponds to a particular position on a schematic map of an indoor environment. Alternatively, a radio model may include a propagation parameter value that corresponds to a particular position on a schematic map or to a range to at least one wireless transmitter device of an indoor environment. A radio model may include values derived from any one or more of these example measurements or from other values, which may be predicted or modeled, for each of multiple positions of a schematic map of an indoor environment. Radio models may also be realized in alternative implementations without departing from claimed subject matter.

As noted above, indoor environments may have multiple obstacles that interfere with wireless transmissions or impede mobility. As a result, measurable values for a radio model may be difficult to ascertain, may fluctuate over relatively shorter time frames, may change gradually over relatively longer time frames, and so forth. Similarly, predicted values for a radio model may be difficult to model. Locations of interior obstacles or locations of wireless transmitter devices may also change from time to time. Consequently, radio models for indoor environments may be initially inaccurate or may become stale. Accurate or current radio models, on the other hand, may be used to improve positioning estimates for mobile devices within indoor environments.

Certain example implementations as described herein may relate generally to radio model updating, and more specifically, but by way of example but not limitation, to a radio model that is updated for one mobile device based, at least partly, on at least one measurement ascertained by another mobile device.

Accordingly, for certain example implementations, one or more server devices may receive at least one measurement that corresponds to a position of a first mobile device within an indoor environment. At least one radio model may be updated based, at least in part, on the at least one measurement to produce at least one updated radio model. The at least one radio model and the at least one updated radio model may correspond to the indoor environment. The at least one updated radio model may be transmitted to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment.

Also or alternatively, for certain example implementations, a mobile device may wirelessly receive from one or more server devices at least one updated radio model. The at least one updated radio model may be updated based, at least in part, on at least one measurement that corresponds to at least one position of one or more other mobile devices within an indoor environment. The at least one measurement may have been wirelessly received by the one or more server devices from the one or more other mobile devices. The mobile device may perform a positioning operation within the indoor environment using the at least one updated radio model, which may correspond to the indoor environment.

Alternatively or additionally to using an updated radio model, a mobile device may participate in updating a radio model. In example implementations, a mobile device may obtain one or more measurements that correspond to one or more positions of the mobile device within an indoor environment. The one or more measurements that correspond to the one or more positions of the mobile device may be transmitted to one or more server devices. The one or more server devices may be enabled to produce an updated radio model based, at least in part, on the one or more measurements that correspond to the one or more positions of the mobile device within the indoor environment. However, claimed subject matter is not limited to any of these particular example implementations. Moreover, additional example radio model updating implementations are described further herein below.

FIG. 1 is a schematic block diagram 100 illustrating a mobile device within an example indoor environment in which the mobile device may be provided access to indoor environment characteristics via one or more server devices such that a location-based service may be provided according to an implementation. As illustrated, schematic block diagram 100 may include a mobile device 102 that is located within an indoor environment 104. Schematic block diagram 100 may further include one or more server devices 106, indoor environment characteristics 108, at least one wireless transmitter device 110, and at least one location-based service 112. A wired communication link 114, a wireless communication link 116, and an arrow 118 are also shown in schematic block diagram 100.

For certain example implementations, a mobile device 102 may obtain at least a portion of indoor environment characteristics 108 from one or more server devices 106. Upon receipt of indoor environment characteristics 108, mobile device 102 may store indoor environment characteristics 108 in one or more memories for use in providing at least one location-based service 112, e.g., for a user of mobile device 102. A location-based service 112 may include, by way of example only, a positioning operation or a process that may be facilitated using a position resulting from a positioning operation, as is described further herein below.

Examples of mobile devices 102 may include, but are not limited to, a mobile station, a mobile phone, a cellular phone, a netbook, a laptop, a tablet computer, a slate computer, a personal digital assistant (PDA), a personal navigation device (PND), an entertainment appliance, an e-book reader, or some combination thereof, etc., just to name a few examples. Furthermore, a mobile device 102 may comprise any mobile device with wireless communication capabilities. Example realizations for a mobile device, as well as additional mobile device examples, are described herein below with particular reference to FIG. 13. However, claimed subject matter is not limited to any particular type, size, category, capability, etc. of a mobile device.

In example implementations, indoor environment 104 may comprise one or more indoor areas such as office buildings, shopping malls, airports, apartment buildings, arenas, convention centers, auditoriums, amphitheatres, warehouses, classroom buildings, supermarkets, stadiums, a transit station terminal, a library, one or more floors thereof, interiors of other structures, or any combination thereof, just to name a few examples. In example implementations, indoor environment characteristics 108 may be descriptive of an indoor environment and may facilitate providing a location-based service 112, examples of which are described below. By way of example but not limitation, indoor environment characteristics 108 may include one or more of any of the following: a schematic map, a connectivity graph for a schematic map, a routing graph for a schematic map, annotation information for a schematic map, points of interest for an indoor environment, navigational instructions, at least one radio model, or any combination thereof, etc. Additional description and examples of indoor environment characteristics 108 are described herein below with particular reference to FIG. 4.

In example implementations, a wireless transmitter device 110 may comprise a Wi-Fi and/or WLAN AP, a femtocell nodal device, a WiMAX nodal device, a location beacon, a Bluetooth or other similarly short-ranged wireless node, or any combination thereof, etc., just to name a few examples. Wireless transmitter devices 110 may transmit signals including, but not limited to, those capable of identifying a particular wireless access device. A mobile device 102 may be within wireless communication range of one or more wireless transmitter devices 110 and thus in wireless communication with one or more wireless transmitter devices 110. A wireless transmitter device 110 may also be capable of receiving wireless signals or may comprise a wireless access device generally that is capable of transmitting and receiving wireless signals. A wireless transmitter device 110 may be located such that it is associated with and communicating within a single indoor environment 104 or multiple indoor environments 104. During wireless communication(s), a mobile device 102 may receive from one or more wireless transmitter devices 110 one or more wireless transmitter device identifiers that are respectively associated with the one or more wireless transmitter devices 110. For a Wi-Fi AP implementation of a wireless transmitter device 110, by way of example but not limitation, a wireless transmitter device identifier may comprise an AP medium access control identifier (MAC ID). Such a wireless transmitter device 110 may further interact with a mobile device 102 so as to provide other measurements or other detectable information, such as RTT measurements, RTD measurements, or RSSI measurements, etc., just to name a few examples.

As depicted in schematic block diagram 100, one or more server devices 106 may be located external to indoor environment 104. However, one or more server devices 106 may alternatively be located fully or partially internal to indoor environment 104 without departing from claimed subject matter. Similarly, although wireless transmitter device 110 is illustrated as being located internal to indoor environment 104, it may alternatively be located fully or partially external to indoor environment 104 without departing from claimed subject matter. Although only one server device 106 and wireless transmitter device 110 are explicitly shown in schematic block diagram 100, more than one of either or both may alternatively be involved in a given implementation without departing from claimed subject matter.

Also, although no particular mode of communication between mobile device 102 and one or more server devices 106 is connoted by arrow 118 interconnecting the two of them as explicitly depicted in schematic block diagram 100, it should be noted that communications between them may be made at least partially wirelessly. By way of example but not limitation, a communication between a mobile device 102 and one or more server devices 106 may be propagated wirelessly at least part of the way (e.g., via one or more wireless communication links 116 between mobile device 102 and a wireless transmitter device 110, a cellular base station, etc.) or may be propagated by wire at least part of the way (e.g., via one or more wired communication links 114 over one or more wired networks (not explicitly shown) such as an intranet, the Internet, a telephone network, etc.). As used herein, if a communication is “wirelessly received” or “wirelessly transmitted”, the term “wirelessly” is intended to connote that at least a portion of a communication path from a source to a destination (e.g., between two devices) is effectuated via at least one wireless communication link. A wireless communication link in this context may comprise a first or initiating communication link, a final or terminating communication link, any one or more intermediate communication links, any combination thereof, etc., just to name a few examples.

As described above, examples of location-based services 112 may include, but are not limited to, displaying a map, positioning, personal vehicle or pedestrian navigation, providing “static” directions, providing real-time turn-by-turn directions, location-based searching (e.g., searching of local points of interest), or any combination thereof, etc. Implementing a location-based service 112 may involve using or providing any one or more of the following: a schematic map, annotation information for a schematic map, POI information, a connectivity graph, a routing graph, turn-by-turn directional instructions, “static” directional instructions from one location to another location, or any combination thereof, etc.. Other examples of location-based services 112 may include, but are not limited to, routing, position filtering, incentives applications (e.g., offers based on location), or any combinations thereof, etc.

FIG. 2 is a schematic diagram 200 of an example indoor environment, within which a mobile device may navigate, that may include multiple obstacles or a multitude of feasible positions for mobile devices according to an implementation. As illustrated, schematic diagram 200 may depict an example indoor environment 104 including multiple obstacles 202 or multiple positions 204. Schematic diagram 200 may also illustrate one or more ranges 206. A mobile device 102 may wirelessly communicate or navigate within indoor environment 104. Positions 204 may comprise feasible positions at which a mobile device 102 may be located or to which a mobile device 102 may navigate. Indoor environment 104 may also include one or more wireless transmitter devices 110, such as wireless transmitter device 110a or wireless transmitter device 110b. Wireless signals (not explicitly shown in FIG. 2) may be emanating from wireless transmitter device 110a or wireless transmitter device 110b of indoor environment 104.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Radio model updating patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Radio model updating or other areas of interest.
###


Previous Patent Application:
Position estimating for a mobile device
Next Patent Application:
Spacecraft development testbed system
Industry Class:
Telecommunications
Thank you for viewing the Radio model updating patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.75735 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.295
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130017842 A1
Publish Date
01/17/2013
Document #
13615038
File Date
09/13/2012
USPTO Class
4554561
Other USPTO Classes
International Class
04W4/04
Drawings
13


Server


Follow us on Twitter
twitter icon@FreshPatents