FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: August 17 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Medical implant deployment tool

last patentdownload pdfdownload imgimage previewnext patent


20130013057 patent thumbnailZoom

Medical implant deployment tool


A medical implant deployment tool and deployment method are disclosed. One aspect of the invention provides an implant system including an implant adapted for endovascular delivery and deployment; and a deployment tool adapted to deploy the implant, with the deployment tool having an actuation controller; a plurality of actuation elements adapted to apply forces to one or more implant deployment mechanisms and each adapted to extend along an actuation element path within a patient's vasculature; and an actuation element compensation mechanism adapted to compensate for differences in length between the actuation element paths.
Related Terms: Implant Vascular

Browse recent Sadra Medical, Inc. patents - Campbell, CA, US
Inventors: Amr Salahieh, Ulrich R. Haug, Claudio Argento, Dwight Morejohn, Daniel Hildebrand, Tom Saul
USPTO Applicaton #: #20130013057 - Class: 623 211 (USPTO) - 01/10/13 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Heart Valve >Combined With Surgical Tool

Inventors:

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130013057, Medical implant deployment tool.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 11/274,889, filed Nov. 14, 2005.

BACKGROUND OF THE INVENTION

The present invention relates principally to a system for the delivery and deployment of a replacement heart valve. Heart valve surgery is used to repair or replace diseased heart valves. Valve surgery is an open-heart procedure conducted under general anesthesia. An incision is made through the patient\'s sternum (sternotomy), and the patient\'s heart is stopped while blood flow is rerouted through a heart-lung bypass machine.

Valve replacement may be indicated when there is a narrowing of the native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates. When replacing the valve, the native valve is excised and replaced with either a biologic or a mechanical valve. Mechanical valves require lifelong anticoagulant medication on to prevent blood clot formation, and clicking of the valve often may be heard through the chest. Biologic tissue valves typically do not require such medication. Tissue valves may be obtained from cadavers or may be porcine, equine, bovine, or other suitable material, and are commonly attached to synthetic rings that are secured to the patient\'s heart.

Valve replacement surgery is a highly invasive operation with significant concomitant risk. Risks include bleeding, infection, stroke, heart attack, arrhythmia, renal failure, adverse reactions to the anesthesia medications, as well as sudden death. Two to five percent of patients die during surgery.

Post-surgery, patients temporarily may be confused due to emboli and other factors associated with the heart-lung machine. The first 2-3 days following surgery are spent in an intensive care unit where heart functions can be closely monitored. The average hospital stay is between 1 to 2 weeks, with several more weeks to months required for complete recovery.

In recent years, advancements in minimally invasive surgery and interventional cardiology have encouraged some investigators to pursue percutaneous replacement of the aortic heart valve. Percutaneous Valve Technologies (“PVT”) Inc., has developed a balloon-expandable stent integrated with a bioprosthetic valve. The stent/valve device is deployed across the native diseased valve to permanently hold the valve open, thereby alleviating a need to excise the native valve and to position the bioprosthetic valve in place of the native valve. PVT\'s device is designed for delivery in a cardiac catheterization laboratory under local anesthesia using fluorscopic guidance, thereby avoiding general anesthesia and open-heart surgery. The device was first implanted in a patient in April of 2002.

PVT\'s device suffers from several drawbacks. Deployment of PVT\'s stent is not reversible, and the stent is not retrievable. This is a critical drawback because improper positioning too far up towards the aorta risks blocking the coronary ostia of the patient. Furthermore, a misplaced stent/valve in the other direction (away from the aorta, closer to the ventricle) will impinge on the mitral apparatus and eventually wear through the leaflet as the leaflet continously rubs against the edge of the stent/valve.

Another drawback of the PVT device is its relatively large cross-sectional delivery profile. The PVT system\'s stent/valve combination is mounted onto a delivery balloon, making retrograde delivery through the aorta challenging. An antegrade transseptal approach may therefore be needed, requiring puncture of the septum and routing through the mitral valve, which significantly increases complexity and risk of the procedure. Very few cardiologists are currently trained in performing a transseptal puncture, which is a challenging procedure by itself

Other prior art replacement heart valves use self-expanding stents as anchors. In the endovascular aortic valve replacement procedure, accurate placement of aortic valves relative to coronary ostia and the mitral valve is critical. Standard self-expanding systems have very poor accuracy in deployment, however. Often the proximal end of the stent is not released from the delivery system until accurate placement is verified by fluoroscopy, and the stent typically jumps once released. It is therefore often impossible to know where the ends of the stent will be with respect to the native valve, the coronary ostia and the mitral valve.

Also, visualization of the way the new valve is functioning prior to final deployment is very desirable. Visulization prior to final and irreversible deployment cannot be done with standard self-expanding systems, however, and the replacement valve is often not fully functional before final deployment.

Another drawback of prior art self-expanding replacement heart valve systems is their lack of radial strength. In order for self-expanding systems to be easily delivered through a delivery sheath, the metal needs to flex and bend inside the delivery catheter without being plastically deformed. In arterial stents, this is not a challenge, and there are many commercial arterial stent systems that apply adequate radial force against the vessel wall and yet can collapse to a small enough diameter to fit inside a delivery catheter without plastically deforming.

However when the stent has a valve fastened inside it, as is the case in aortic valve replacement, the anchoring of the stent to vessel walls is significantly challenged during diastole. The force to hold back arterial pressure and prevent blood from going back inside the ventricle during diastole will be directly transferred to the stent/vessel wall interface. Therefore the amount of radial force required to keep the self expanding stent/valve in contact with the vessel wall and not sliding will be much higher than in stents that do not have valves inside of them. Moreover, a self-expanding stent without sufficient radial force will end up dilating and contracting with each heartbeat, thereby distorting the valve, affecting its function and possibly migrating and dislodging completely. Simply increasing strut thickness of the self-expanding stent is not a practical solution as it runs the risk of larger profile and/or plastic deformation of the self-expanding stent.

U.S. patent application Ser. No. 2002/0151970 to Garrison et al. describes a two-piece device for replacement of the aortic valve that is adapted for delivery through a patient\'s aorta. A stent is percutaneously placed cross the native valve, then a replacement valve is positioned within the lumen of the stent. By separating the stent and the valve during delivery, a profile of the device\'s delivery system may be sufficiently reduced to allow aortic delivery without requiring a transseptal approach. Both the stent and a frame of the replacement valve may be balloon-expandable or self-expanding.

While providing for an aortic approach, devices described in the Garrison patent application suffer from several drawbacks. First, the stent portion of the device is delivered across the native valve as a single piece in a single step, which precludes dynamic repositioning of the stent during delivery. Stent foreshortening or migration during expansion may lead to improper alignment.

Additionally, Garrison\'s stent simply crushes the native valve leaflets against the heart wall and does not engage the leaflets in a manner that would provide positive registration of the device relative to the native position of the valve. This increases an immediate risk of blocking the coronary ostia, as well as a longer-term risk of migration of the device post-implantation. Further still, the stent comprises openings or gaps in which the replacement valve is seated post-delivery. Tissue may protrude through these gaps, thereby increasing a risk of improper seating of the valve within the stent.

One potential solution to these issues is the development and use of a repositionable heart valve, as has been described in U.S. patent application Ser. No. 10/746,280 filed on Dec. 23, 2003 entitled “Repositionable Heart Valve and Method.” The contents of that application are herein incorporated by reference. The repositionable heart valve resolves numerous issues presented by Garrison\'s stent. However deploying and redeploying the heart valve is not without its own set of technical challenges.

One challenge with using mechanical elements to connect the user control with an implantable device and/or its delivery system is assuring that the user controls properly actuate the mechanical components of the system, particularly when the deployment tool or catheter navigates the tortuous path from its insertion point to the deployment location, such as the heart. For example, some deployment systems use multiple actuators elements extending along at least part of the path from insertion point to deployment location to perform the deployment function. Bends, twists, and rotations in the catheter can cause internal physical path lengths to vary widely.

If differences in actuator path lengths are not properly compensated for, the operation of the deployment tool may not be predictable. For instance, some actuators may have a shorter path length to the implant and its deployment mechanism than others. If all the actuators are used simultaneously, the operator would expect an even distribution of the deployment operation. Instead those paths that are shorter might function sooner, while those that are longer might operate later. The reverse is also true if the shorter lengths are overly relaxed due to slack in the actuation elements, while the longer path ways are taut because the actuation elements are strained because of the longer path length. In either scenario, the operation and deployment become unpredictable and unreliable. If stresses on the actuation elements are too great, they may cause deformation or distortion of the implant before any of the actuation elements are even used. This could result in serious complications that may require invasive procedures to intervene.

SUMMARY

OF THE INVENTION

Thus it is an objective of the present invention to provide for a system capable of deploying a replacement heart valve where the system has a compensation mechanism for correcting path length differences among the mechanical actuation elements.

It is another objective of the present invention to provide a system able to exert the needed actuation forces for both deployment, and redeployment of the replacement heart valve.

Yet another objective is to provide for a deployment system having a reliable actuator system for safely delivering the proper level of forces to the implant and the deployment mechanism that the implant requires.

There is still another need for a method of operating such a system to provide safe and effective steps to handle the deployment of a replacement heart valve or other vascular implant.

One or more of the objectives above are met using an implant system comprising an implant, and a deployment tool adapted to deploy the implant. The deployment tool comprises an actuation controller and a plurality of elements adapted to apply forces to one or more implant deployment mechanism(s). Each actuation element is adapted to extend along an actuation element path within a patient\'s vasculature. There is also an actuation element compensation mechanism adapted to compensate for differences in length between the actuation element paths.

There is also a method for deploying an implant using the system of the present invention. The method comprises the steps of first endovascularly delivering an implant and implant deployment mechanism to an implant site. Second applying an actuation force to the implant deployment mechanism through actuation elements extending through the patient\'s vasculature while compensating for differences in length between actuation element path lengths to deploy the implant.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1A shows an implant to be used with the present invention.

FIG. 1B-C illustrate two cut away views of the implant.

FIG. 2 provides an illustration of the system.

FIG. 3A shows one embodiment of an actuation element path length compensation

FIG. 3B illustrates a cross section of the deployment tool.

FIG. 3C illustrates a mold used in manufacturing the actuation element path length compensation section.

FIG. 4 illustrates a multiple actuation element compensation mechanism.

FIG. 5 shows a pulley style compensation mechanism.

FIGS. 6A-B show an actuation element path length compensation mechanism using a common path for multiple actuation elements.

FIG. 7 shows a length style compensation mechanism.

FIGS. 8A-J illustrate additional compensation mechanisms.

FIG. 9 illustrates a hydraulic compensation mechanism.

FIGS. 10A-E illustrates an implant deployment.

FIGS. 11A-B provide an illustration of implant and actuation element details according to alternative embodiments of the invention.

DETAILED DESCRIPTION

OF THE INVENTION

The invention is drawn to methods, mechanisms and tools for the endovascular deployment of medical implants, such as replacement heart valves. According to some embodiments of the invention, the deployment process includes actuating one or more actuation elements to control and/or perform actions of the implant deployment mechanism, or mechanical elements of the implant itself. The operation of the implant deployment mechanism or the mechanical elements of the implant are often fully reversible, allowing a physician to partially deploy and then reverse the deployment operation of (“undeploy”) the implant. This provides the ability to reposition and redeploy the implant. As a general reference, the orientation of the system is referred to as is traditional for a medical device catheter. The proximal end is nearest the physician or operator when the system is being used. The distal end is furthest away from the operator and is in the patient\'s vasculature. To facilitate imaging of the implant during a procedure, the deployment tool may have a lumen for providing a contrast agent to the site where the implant is being positioned within the patient\'s body.

One embodiment of the invention provides an implant system having an implant adapted for endovascular delivery and deployment and a deployment tool adapted to deploy the implant. The implant of the present invention can be any suitable for deployment into the human body. Possible implants envisioned for deployment with the present system are those previously described in co-pending U.S. patent application Ser. No. 10/746,280 entitled “REPOSITIONABLE HEART VALVE,” filed on Dec. 23, 2003; Ser. No. 10/893,131 entitled “METHODS AND APPARATUS FOR ENDOVASCULARLY REPLACING A PATIENT′S HEART VALVE” field on Jul. 15, 2004; Ser. No. 10/893,151 entitled “METHODS AND APPARATUS FOR ENDOVASCULARLY REPLACING A PATIENT′S HEART VALVE” filed on Jul. 15, 2004; Ser. No. 10/746,120 entitled “EXTERNALLY EXPANDABLE HEART VALVE ANCHOR AND METHOD” filed on Dec. 23, 2003; Ser. No. 10/746,285 entitled “RETRIEVABLE HEART VALVE ANCHOR AND METHOD” filed Dec. 23, 2003; Ser. No. 10/982,692 entitled “RETRIEVABLE HEART VALVE ANCHOR AND METHOD” filed on Nov. 5, 2004; Ser. No. 10/746,872 entitled “LOCKING HEART VALVE ANCHOR” filed on Dec. 23, 2003; and Ser. No. 10/870,340 entitled “EVERTING HEART VALVE” filed on Jun. 16, 2004. Additional forms of a replacement heart valve implant will be illustrated herein.

The deployment tool is designed to deliver the implant to an implant site and to deploy the implant, such as described in the above referenced patent application(s). In some embodiments, the deployment is controlled through actuation elements which are connected to actuators (such as knobs, levers, etc.) in an actuation controller (such as a handle). When a user exerts force on an actuator, by either pushing or pulling the actuator, the actuation element conveys a force to whatever the actuation element is connected to, such as an implant deployment mechanism or the implant. For minimally invasive implant procedures (percutaneous, endovascular, laparoscopic, etc.), the actuator controller and actuators are often remote from the actuated implant. In addition, the path from actuator to implant—the path along which the actuation elements extend—may be other than a straight line. For example, the delivery tool for a percutaneous endovascular delivery of a replacement heart valve may extend through the arterial vasculature from an opening in the patient\'s femoral artery at the thigh to the patient\'s aorta, a route that has multiple bends and turns. Because some of the deployment tool\'s actuation elements extend through a bent or turned section of the deployment tool, the path lengths through which various actuation elements need to operate may differ. It may therefore be desirable to compensate for these differences in path length, or to otherwise equate displacements and force of the actuation element paths.

In some embodiments, deployment is achieved when an operator uses the actuation controller to apply proximally or distally directed forces on the implant deployment mechanism. These forces are translated into displacements. Force is conveyed from the actuation controller through the actuation elements to an implant deployment mechanism. The actuation elements extend along actuation element paths. This invention provides an actuation compensation mechanism incorporated into the deployment tool that compensates for variations in length between actuation element paths.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Medical implant deployment tool patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Medical implant deployment tool or other areas of interest.
###


Previous Patent Application:
Radiopaque intraluminal stent
Next Patent Application:
Valve repair instrument
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Medical implant deployment tool patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.87131 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3076
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130013057 A1
Publish Date
01/10/2013
Document #
13612119
File Date
09/12/2012
USPTO Class
623/211
Other USPTO Classes
International Class
61F2/24
Drawings
20


Implant
Vascular


Follow us on Twitter
twitter icon@FreshPatents