FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2013: 2 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Orthopedic knee joint and method for controlling an orthopedic knee joint

last patentdownload pdfdownload imgimage previewnext patent


20130006388 patent thumbnailZoom

Orthopedic knee joint and method for controlling an orthopedic knee joint


An orthopedic knee joint having an upper part with upper connecting features, a lower part which is mounted pivotably on the upper part and has connecting features for prosthetic components, and a stop for limiting an extension movement. The stop and is coupled to an adjusting device, which is coupled to a control device that actuates the adjusting device as a function of sensor data and changes the position of the stop. If the knee joint is provided with an adjustable extension stop position, the extension stop can be shifted forward for walking, which results in a greater inclination at heel strike in order to flex the knee joint and, therefore, increased damping upon initiation of the stance phase. For standing, the adjusting device can be activated so that the extension stop is reversed, such that a statically more secure orthosis or prosthesis set-up can be obtained.
Related Terms: Hope+ Knee Joint Prosthesis Prosthetic Pivotably

Inventors: Martin PUSCH, Philipp KAMPAS
USPTO Applicaton #: #20130006388 - Class: 623 43 (USPTO) - 01/03/13 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Leg >Knee >Brake Or Latch

Inventors:

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130006388, Orthopedic knee joint and method for controlling an orthopedic knee joint.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATION

This application is a division of application Ser. No. 12/866,698, filed Dec. 13, 2010, pending, which is a 371 of PCT/DE2009/000162 filed on Feb. 5, 2009 and published on Aug. 13 2009 as WO 2009/097841, which claims priority to German Patent Application No. 10 2008 008 284.8, filed Feb. 7 2008, the disclosure of each of which is incorporated, in its entirety, by reference.

TECHNICAL FIELD

The invention relates to an orthopedic knee joint, with an upper part on which upper connecting means are arranged, with a lower part which is mounted pivotably on the upper part and has connecting means for prosthetic components, and with a stop for limiting an extension movement, and also a method for controlling an orthopedic knee joint.

BACKGROUND

The main aim of fitting a prosthesis is to provide the best possible replacement for the lost limb, as far as possible without functional limitations. If a patient has to be provided with an above-knee prosthesis having a prosthetic knee joint, there are many possible ways of designing such a prosthetic knee joint.

A simple passive, monocentric knee joint is particularly simple in terms of design and production, but it only partially simulates the natural knee joint and, in particular, does not permit a natural gait pattern. A securing against buckling of the prosthetic knee joint can be achieved by a suitably stable set-up, that is to say the relationship of the individual prosthesis components to one another and to the body, if appropriate assisted by a locking mechanism in what is called a lockable knee joint. In such a prosthetic knee joint, the knee is always fully extended to the end of the swing phase, as a result of which the monocentric knee joints, because of the need for a statically secure set-up, have no tendency or only a slight tendency to bend, even at the moment of heel strike. This has the effect that the impact load at heel strike is introduced directly into the thigh stump or into the hip, whereas, from the physiological point of view, the natural knee joint flexes by ca. 25° at heel strike, which results in a considerable damping of the heel strike.

In addition to monocentric prosthetic knee joints, there are polycentric prosthetic knee joints which, with a suitably high position of the instantaneous center of rotation of the extension position, have excellent inherent stability not only during standing, but also when a load is placed on the heel at the start of the stance phase of walking, with the result that the prosthetic knee joint is secure in the extended position, even without a hip extension moment being applied. A polycentric prosthetic knee joint of this type likewise permits a smooth transfer into the swing phase and an initiation of a knee flexion with loading on the front of the foot. An approximation to the natural gait pattern is thereby achieved. Polycentric prosthetic knee joints often have damping devices with which it is possible to initiate an elastically cushioned or damped flexion of the knee without loss of stability. A polycentric prosthetic knee joint with an adjustable pivot stop is described in DE 40 04 988 A1.

Furthermore, so-called active prosthetic knee joints are known which, with the aid of a motor, initiate the flexion and extension on the basis of sensor data. There are also active damping devices present in order to adapt the damping to the particular requirements. Such prosthetic knee joints are extremely complicated in terms of design and production.

SUMMARY

Proceeding from this prior art, the object of the invention is to make available a cost-effective prosthetic knee joint and a method for controlling a prosthetic knee joint, which prosthetic knee joint and which method allow the user to walk comfortably and to stand in a relaxed manner.

According to the invention, this object is achieved by an orthopedic knee joint having the features of claim 1, and by a method for controlling the orthopedic knee joint and having the features of claim 7. Advantageous embodiments and developments of the invention are described in the respective dependent claims.

The orthopedic knee joint according to the invention, with an upper part on which upper connecting means are arranged, with a lower part which is mounted pivotably on the upper part and has connecting means for prosthetic components, and with a stop for limiting an extension movement, is characterized in that the stop is designed to be movable and is coupled to an adjusting device, which is coupled in turn to a control device that actuates the adjusting device as a function of sensor data and changes the position of the stop. An orthopedic knee joint is understood to mean prosthetic knee joints and also orthotic knee joints. Where knee joints are stated below, this means orthotic and prosthetic knee joints, whereas natural knee joints are specified separately as such. If a knee joint, in particular a single-axis knee joint, is provided with an adjustable extension stop position, the extension stop can be shifted forward for walking, which results in a greater inclination at heel strike in order to flex the knee joint and, therefore, increased damping upon initiation of the stance phase. For standing, the adjusting device can be activated in such a way that the extension stop is reversed, such that a statically more secure orthosis or prosthesis set-up can be obtained. By means of the active adjustment of the active position of the extension stop, the user can be provided with a comfortable walking pattern, as a result of the dynamic forward shift and the damping of the heel strike, and with a relaxed stance, as a result of a more secure set-up.

The adjusting device advantageously has an electric motor, for example a stepping motor, which, with suitable actuation, permits a very precise positioning of the stop as a function of the sensor data.

Alternatively, the adjusting device can adjust the stop hydraulically, such that, by virtue of the basic damping properties of a hydraulic adjusting system, a damping of the stop is obtained at the same time. In the case of a purely electromotive adjustment, the stop can likewise be equipped with a stop damper in order to reduce the load on the mechanical components of the knee joint and also on the thigh stump.

The sensor data are preferably determined via sensors designed as flexion angle sensor, inclination sensor, acceleration sensor and/or force sensor, such that the data required for detection of the particular state of movement can be made available with the highest possible accuracy.

The stop can be coupled to the adjusting device via a thread, such that a spindle adjustment can take place in which either the spindle itself or the spindle nut, that is to say the inner thread or the outer thread, can be driven, such that the respective element not being directly driven moves in the corresponding direction.

Orthotic or prosthetic knee joints often have damping devices or other hydraulic devices in which a hydraulic fluid is conveyed through lines when the lower part is moved relative to the upper part. In such knee joints, the extension stop can be adjusted by a blocking device, which is arranged in the hydraulic circuit, being closed by the adjusting device when the desired or calculated angle position is reached in the extension movement. The blocking device, a throttle or a valve, can then be closed when the extension position is reached, if appropriate including the delay caused by the adjustment, such that the hydraulic fluid can no longer continue to flow, as a result of which the extension movement is stopped. The design of the extension stop as a hydraulic stop also has the advantage of being gentle on the mechanical components of the knee joint.

The method according to the invention for controlling an orthopedic knee joint with an extension stop and with an adjusting device by which the position of the extension stop can be changed is characterized in that the position of the extension stop is changed as a function of sensor data, in particular in relation to walking speed and/or stride. The walking speed and/or stride is determined via sensors, the adjustment routine or control routine being such that, at a walking speed of 0, i.e. when standing, a maximum extension is adopted in order to provide a set-up that is as secure as possible.

To use as little energy as possible and to achieve a regular gait pattern, the change of position of the extension stop is carried out during the swing phase, preferably with a continuous adjustment of the position of the end stop, which has the result that changes in the walking speed and/or stride are also taken into account. It is thus possible that the stable set-up, which is preferred during standing, is changed during walking in such a way that a knee joint dynamic in the stance phase can also contribute to the heel strike damping at quite high speeds.

The change in the position of the extension stop takes place independently of any change in the movement resistance in the flexion or extension direction. In addition to an adjustment of purely mechanical stops, which can be configured in the form of stop shoulders, pins or the like, the extension stop can also be effected by the closure of valves. The knee joints that have an adjustable damping device can be designed such that the control device, as a function of the determined sensor data, closes the extension-damping valve in a defined position of the lower part relative to the upper part, in order in this way to limit the pivoting movement. The valve is preferably designed as a shut-off valve which is closed when a predetermined position is reached. If appropriate, an adjustable throttle which is used for adapting the extension damping can be used as the shut-off valve.

BRIEF DESCRIPTION OF THE DRAWINGS

Illustrative embodiments of the invention are explained in more detail below with reference to the attached figures, in which identical reference numbers designate identical components, and in which:



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Orthopedic knee joint and method for controlling an orthopedic knee joint patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Orthopedic knee joint and method for controlling an orthopedic knee joint or other areas of interest.
###


Previous Patent Application:
Prosthetic connector
Next Patent Application:
User support system, user support method, and management server for supporting user of portable information terminal
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Orthopedic knee joint and method for controlling an orthopedic knee joint patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.53496 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2434
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20130006388 A1
Publish Date
01/03/2013
Document #
13546837
File Date
07/11/2012
USPTO Class
623 43
Other USPTO Classes
International Class
61F2/64
Drawings
6


Hope+
Knee Joint
Prosthesis
Prosthetic
Pivotably


Follow us on Twitter
twitter icon@FreshPatents