FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Communication system for wireless audio devices

last patentdownload pdfdownload imgimage previewnext patent

20130004002 patent thumbnailZoom

Communication system for wireless audio devices


The present subject matter provides a system for wireless communications between one or more wireless audio devices and other electronics for providing a rich set of streaming audio, control, programming and enhanced hearing functions.
Related Terms: Audio Communications Communication System Hearing Streaming Wireless
Browse recent Starkey Laboratories, Inc. patents
USPTO Applicaton #: #20130004002 - Class: 381315 (USPTO) - 01/03/13 - Class 381 
Electrical Audio Signal Processing Systems And Devices > Hearing Aids, Electrical >Remote Control, Wireless, Or Alarm



Inventors:

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20130004002, Communication system for wireless audio devices.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATION

This application is a continuation of and claims the benefit of priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 11/447,617, filed on Jun. 5, 2006, which claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/687,707 filed Jun. 5, 2005, the benefit of priority of each of which is claimed hereby, and each of which are incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present subject matter relates generally to wireless communications and more particularly to wireless communication systems for wireless audio devices.

BACKGROUND

Audio devices for listening to sound are becoming more diverse and prolific with time. Audio device manufacturers find new technologies and applications which enable new solutions and designs. In an effort to make audio devices more portable, manufacturers are becoming increasingly interested in producing wireless devices. New forms of content and communication arise which provide opportunities and engineering hurdles for manufacturers.

What is needed in the art is a system for communication with wireless audio devices. Such a system should be flexible to provide enhanced features. The system should be configurable for a variety of content and communications options.

SUMMARY

The above-mentioned problems and others not expressly discussed herein are addressed by the present subject matter and will be understood by reading and studying this specification.

The present subject matter provides a system for wireless communications between one or more wireless audio devices and other electronics for providing a rich set of streaming audio, control, programming and enhanced hearing functions. In one application, the present system provides highly programmable and intelligent communications to hearing assistance devices, such as hearing aids. Mono and stereo communication modes are supported in various embodiments. Unicast, multicast and broadcast communication modes are also supported in some embodiments. Several approaches are provided and the examples set forth herein are not intended to be limiting or exclusive.

This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. The scope of the present invention is defined by the appended claims and their legal equivalents.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1A, 1B, and 1C demonstrate an interface between a communication device and one or more wireless audio devices, according to some embodiments of the present subject matter;

FIGS. 2-5 provide some examples of an interface according to some embodiments of the present subject matter;

FIG. 6 shows a microphone application according to one embodiment of the present subject matter.

FIG. 7 shows a wireless audio controller according to one embodiment of the present subject matter.

FIGS. 8 and 9 show some examples of applications of the interface to demonstrate that several communication modes and uses of the present system are possible according to some embodiments of the present subject matter.

FIG. 10 shows a byte diagram according to one embodiment of the present subject matter.

FIG. 11 shows various layers of the system according to one embodiment of the present subject matter.

FIG. 12 is logic diagram of the system according to one embodiment of the present subject matter.

FIGS. 13-16 show various transmission and reception processes of the system according to one embodiment of the present subject matter.

FIG. 17 shows various request timings of the system according to one embodiment of the present subject matter.

FIG. 18 shows various protocol relationships according to one embodiment of the present subject matter.

DETAILED DESCRIPTION

The following detailed description of the present invention refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and therefore and not exhaustive, and the scope of the present subject matter is defined by the appended claims and their legal equivalents.

FIG. 1A shows one embodiment of a communication system 100 for wireless audio devices. In one embodiment, the system includes an interface 110 which provides communications from a communication device 120 to a first port 112 and communications from a second port 114 to a wireless audio device 130. In various embodiments, the system 100 also provides communications to a wireless audio device 140. Some such embodiments include a single wireless interface to perform communications to wireless audio devices 130 and 140. Other such embodiments have second port 114 incorporate at least two wireless interfaces 116 and 117, as shown in FIG. 1B. For ease of explanation, this disclosure will show second port 114, however, it is understood that different embodiments of interface 110 will have a second port 114 that may have one, two, or more wireless interfaces. In packet systems, the effective number of virtual interfaces is set by the coding scheme. In such designs, the physical second interface may employ the same transmitter. Varying embodiments may use a plurality of transmitters. It is understood that various embodiments of interface 110 may also include programmable ports to adapt to different communication applications.

FIG. 1C shows several possible communication paths, each of which may be bidirectional or unidirectional, depending on the programming of the interface 110. In various embodiments, the interface 110 and second port 114 can support different communication modes including communications to a specific device (hereinafter a “unicast”), communications to a specific number of devices (hereinafter a “multicast”) and/or communications to all such devices (hereinafter a “broadcast”).

Special unicast, multicast, and broadcast modes can be established once it is known whether a user has a pair of wireless audio devices. For example, in the case where at least one user has two wireless audio devices, a user unicast is the act of sending information to one user, whether by a single wireless audio device of that user or to both wireless audio devices of that user. A user multicast and user broadcast can also be performed based on the knowledge of which devices any user has.

Various embodiments feature programmable communication modes to adapt to different communication applications and environments. In various embodiments interface 110 is programmable to provide different configurations employing unidirectional and bidirectional communication modes over every communication path supported by the interface 110. Consequently such communication modes are adjustable and highly programmable.

Wireless

In various embodiments, the first port 112 of the system 100 is adapted to be wireless. In such embodiments, one or more wireless communications can be supported from communication device 120 to interface 110. In various embodiments the wireless communications can include standard or nonstandard communications. Some examples of standard wireless communications include link protocols including, but not limited to, Bluetooth™, IEEE 802.11 (wireless LANs), 802.15 (WPANs), 802.16 (WiMAX), 802.20 mobile wireless, cellular protocols including, but not limited to CDMA and GSM, ZigBee, and ultra-wideband (UWB) technologies. Such protocols support radio frequency communications and some support infrared communications. It is possible that other forms of wireless communications can be used such as ultrasonic, optical, and others. It is understood that the standards which can be used include past and present standards. It is also contemplated that future versions of these standards and new future standards may be employed without departing from the scope of the present subject matter.

In various embodiments, the second port 114 of the system 100 is adapted to be wireless. One or more wireless communications can be supported. In one embodiment, CSMA communications are supported. In various embodiments the wireless communications can include standard or nonstandard communications. Some examples of standard wireless communications include link protocols including, but not limited to, Bluetooth™, IEEE 802.11 (wireless LANs), 802.15 (WPANs), 802.16 (WiMAX), 802.20 mobile wireless, cellular protocols including, but not limited to CDMA and GSM, ZigBee, and ultra-wideband (UWB) technologies. Such protocols support radio frequency communications and some support infrared communications. It is possible that other forms of wireless communications can be used such as ultrasonic, optical, and others. It is understood that the standards which can be used include past and present standards. It is also contemplated that future versions of these standards and new future standards may be employed without departing from the scope of the present subject matter.

The use of standard communications makes interface 110 readily adapted for use with existing devices and networks, however, it is understood that in some embodiments nonstandard communications can also be used without departing from the scope of the present subject matter.

Wired

In various embodiments, the first port 112 of the system 100 is adapted to be connected to communication device 120. Such connections include, but are not limited to, one or more mono or stereo connections or digital connections having link protocols including, but not limited to IEEE 802.3 (Ethernet), 802.4, 802.5, USB, ATM, Fibre-channel, Firewire or 1394, InfiniBand, or a native streaming interface. Such connections include all past and present link protocols. It is also contemplated that future versions of these protocols and new future standards may be employed without departing from the scope of the present subject matter.

The use of standard communications makes interface 110 readily adapted for use with existing devices and networks, however, it is understood that in some embodiments nonstandard communications can also be used without departing from the scope of the present subject matter.

Hybrid

In various embodiments, the first port 112 of system 100 is adapted to have one or more wireless and one or more wired interfaces. Programmable and selectable options are provided by various embodiments.

Processing and Formatting

In various embodiments, the first port 112 is adapted to receive information from communication device 120, process or format it if required, and transmit the information to one or more wireless audio devices 130. The first port 112 receives information from communication device 120 and transmits it to one or more wireless audio devices 130 and 140. The wireless audio devices 130 and 140 use the information to provide audio to a listener. In one application, streaming audio packets are received from communication device 120 and transmitted to the wireless audio devices 130 and 140. In some embodiments, the streaming audio is in stereo and the listening devices are right and left listening pairs which are individual wireless receivers. The interface 110 can transmit stereo information which is received by the proper wireless audio device to preserve the stereo nature of the information. In some embodiments, the wireless audio devices 130 and 140 have a communication path between them to transmit various information or control signals wirelessly to each other. In various embodiments the protocol adopted by interface 110 will support communications between wireless audio device 130 and 140.

Formatting of information transceived with the wireless audio devices is adapted to place the information in a protocol that is power conservative and compatible with such devices. For instance, in the case where the wireless audio devices include hearing aids, such devices naturally are limited to form factors that are suitable for behind-the-ear and in-the-ear geometries. Such size restrictions are substantial, since they limit the battery size and thus the power available to any such device and they limit the size of antennae and communications electronics to spaces not used by microphones, signal processing, and receiver electronics.

In some embodiments the ability to transfer information readily between the interface 110 and the wireless audio devices permits shared processing and storage. Thus, this new topology can reduce certain processing and storage requirements of the wireless audio devices and can enhance the signal processing power of such devices using the system as a whole.

Communication Device Options

It is understood that in various embodiments the communication device 120 can be a variety of different data sources and via a variety of connections. For instance, in one application, it includes a computer connected to a content source over a network, such as the Internet. In one application, it includes a storage device, such as an iPod™ or other streaming audio device. In one application it includes a connection to a wireless audio source. In one application it includes a connection to a Bluetooth telephone. In one application it includes a wireless connection to a computer having a Bluetooth transceiver. In one application it includes a wireless connection to a Bluetooth MP3 player. In one application it includes a wireless connection to an audio/video device equipped with a Bluetooth interface. In one application it includes a wireless connection to a stereo device having a Bluetooth interface. In various applications a number of wireless protocols are supported, including, but not limited to wi-fi, wi-max, ZigBee, and UWB. One application includes a wired stereo or mono connection. It is understood that a number of device and communication combinations may be supported. Many applications are possible without departing from the scope of the present subject matter, and those provided herein are intended to be demonstrative and not exclusive or exhaustive.

It is understood that the data communicated between the interface 110 and the communication device 120 can include, but are not limited to, any of the following, which are provided to demonstrate some options, and are not intended to be exclusive or exhaustive: streaming audio data; software or program data; variable or parameter data; biometric data; control signals; security or encryption data; diagnostic data; and/or status data.

Interface Options

The interface 110 can have a variety of first ports 112, some of which will be demonstrated by FIGS. 2-9. FIG. 2 shows an embodiment of interface 210 which receives a digital signal using communication port 220 from a source, such as a communication device 120. The signal is processed by a digital signal processor 230 and transmitted to one or more wireless audio devices via transceiver 240 using antenna 250. In one embodiment, the digital signal is wireless. In one embodiment, the digital signal is wired. The digital signal may be transceived bidirectionally, transmitted unidirectionally or received unidirectionally by communication port 220 of interface 210.

In receive mode, wireless signals from one or more wireless audio devices are received at antenna 250 and demodulated by transceiver 240. The signals are processed by digital signal processor 230 and any resulting transmissions are sent to communication port 220 for transmission to a communication device 120.

The drawing shows an antenna 250 which is shared for transmit and receive in one embodiment. Various embodiments may incorporate separate receive and transmit sections and antennas without departing from the scope of the present subject matter. Furthermore, the antennas can be located on a substrate of the interface 210 in various embodiments. In other embodiments, the antenna may be external to the interface 210. Various types of antennas, including omnidirectional and directional antennas may be used.

FIG. 3 demonstrates one example of a block diagram showing more details of one example of an interface shown generally in FIG. 2. The communication port 220 is replaced with a Bluetooth processor 320, for example. DSP 330 provides processed digital signals to transceiver 340. The remaining portions of FIG. 3 pertain to impedance matching and gain control of the reception and transmission of signals. Other topologies and circuit designs are possible without departing from the scope of the present subject matter.

In this example, a Bluetooth device, in this example a wireless telephone) is in communication with interface 310 for both audio and data transfer. This demonstrates only one possible wireless first port design and possible communication device. The present description provided further alternative embodiments and future alternative embodiments.

FIG. 4 demonstrates an example of an analog wireless signal input, such as FM into wireless interface 410. In this example, an FM transceiver 420 is used to receive and demodulate the FM signal. DSP 430 will process the received and demodulated information and transceiver 440 will transmit processed information to one or more wireless audio devices via antenna 450. In various embodiments, the system can also broadcast FM using information including signals from one or more wireless audio devices. Other topologies and circuit designs are possible without departing from the scope of the present subject matter.

FIG. 5 demonstrates a wired analog input system where signals from a microphone or microphones are input into interface 510. The analog-to-digital convertor 520 produces digital versions of the signal which are processed by DSP 530. Transceiver 540 is adapted to conduct communications with one or more wireless audio devices via antenna 550. Transceiver 540 is capable of unidirectional or bidirectional communications as needed. Other topologies and circuit designs are possible without departing from the scope of the present subject matter.

FIG. 6 demonstrates a system, such as one shown in FIG. 5 where the microphone 612 is built into a small portable device 610 having wireless communications ability with wireless audio devices 614 and 615. In one embodiment, the link is a low power one way voice link. In various embodiments, the frequency of transmission will be different. In one embodiment for use in the U.S. the transmissions are at about 915 MHz, however, other frequencies discussed herein may be used without departing from the present subject matter. Device 612 affords a hearing impaired person a better chance of hearing a speaker, since it may be attached to a speaker to give clearer and crisper sound to the hearing impaired. The output of the device may be unicast, multicast, or broadcast to provide one or more hearing impaired persons the ability to hear a speaker better.

The device 610 acts as a wireless microphone that communicates with the wireless audio devices (e.g., hearing aids) 614 and 615 and with any other device having a compatible radio. In various embodiments the device 610 is small, portable, and self powered. In various embodiments, it can be easily passed around or easily attached to garments. It can be unobtrusive. Device 610 comprises a microphone, which may be omnidirectional or directional. The microphone may be programmable for better audio reception in different conditions. Device 610 also includes a wireless radio for at least one directional communications, but which may have support for bidirectional communications in various embodiments. Device 610 includes a power supply, such as a battery, an on-off switch or soft switch and software to perform communications and controls.

FIG. 7 shows one example of an interface 110 which is called a wireless audio controller (WAC) 710 which is capable of interfacing with a variety of communication devices, including, but not limited to a microphone, a cellular or Bluetooth device, and a network device. As shown in FIG. 7, one embodiment features volume controls 720 and a microphone 730 as optional features. The WAC can be used to assist a person with wireless audio devices to communicate with a variety of wireless and wired devices, as shown in FIGS. 8 and 9. Even though FIGS. 8 and 9 show hearing aids HA1 and HA2 with wireless interfaces, it is understood that the WAC can communicate with other wireless audio devices having a compatible radio interface and with other wireless devices that have a compatible radio interface (e.g., a router or memory with a compatible wireless interface).

FIG. 8 and FIG. 9 are intended to demonstrate a variety of different wireless and wired communication devices and communication protocols supported by wireless audio controller 710 in various hearing aid applications. The figures show communications at 915 MHz, however, such frequencies are only according to one embodiment and other frequencies as set forth herein may be used without departing from the scope of the present subject matter. It is also understood that any of the wireless protocols may be used without departing from the scope of the present teachings.

Hearing Aid Applications and Protocol

In certain applications, the wireless audio devices 130 and 140 are one or more hearing aids, including, but not limited to behind-the-ear hearing aids, in-the-ear hearing aids, and completely-in-the-canal hearing aids.

In one embodiment employing hearing aids a specialized wireless protocol has been designed to facilitate wireless communication of information received by the interface 110 (which may have been received using either a wired or wireless first port 112 embodiment) in packetized format to the hearing aids. This wireless protocol was designed to provide a high speed communications link for low power systems at frequencies selected to be compatible with other types of communications.

In various embodiments path 1, path 2, and path 3 are bidirectional communication paths. Other embodiments exist without departing from the scope of the present subject matter. For instance, the directionality of the communication paths may vary depending on applications and the need for a direction of communications.

In various embodiments, the wireless protocol is provided with additional support for communications between one wireless audio device and another (for example, path 4).

In various embodiments, the wireless protocol also supports communications to one or more additional wireless audio devices, for example, such as the hearing aid user communicating with interface 110 via path N and path N+1 in FIG. 1C. In one embodiment, this is accomplished using a CSMA transmission approach. Such a system can be programmable to support unicasts, multicasts, broadcasts, and communications with either specific wireless audio devices and/or specific users of a pair of such devices.

Hearing Assistance Device Special Functions

Given the flexibility of the system set forth, it is understood that the applications involving hearing aids can support a variety of intelligent digital signal processing functions, including, but not limited to diotic presentation. Some examples of diotic presentation include, but are not limited to, U.S. Patent Application No. 2003/0215106 to Bren et al., U.S. Patent Application No. 2004/0052391 to Bren et al., which are hereby incorporated by reference in their entirety.

Also available are advanced operations for processing sound for telecoil operations, including but not limited to those provided in U.S. Pat. No. 6,760,457 to Bren et al., U.S. Pat. No. 6,633,645 to Bren et al., U.S. Patent Application No. 2004/0052391 to Bren et al., and U.S. Patent Application No. 2003/0059073 to Bren et al., all of which are incorporated by reference in their entirety.

Such systems can support voice communications, speech recognition, and other intelligent sound processing. One example of speech detection includes but is not limited to that provided by European Patent Application 1519625 to Victorian et al., which is hereby incorporated by reference in its entirety.

One Example of a Wireless Protocol for a Hearing Aid Application

The present subject matter includes various wireless communication protocols. In various embodiments, wireless protocols provide a specification for the interchange of information between wireless audio devices (e.g., hearing aids and hearing aid accessories). In various embodiments, communications take place over a radio frequency communications channel. The following example of a wireless communication protocol provides a specification for the interchange of information between a hearing instrument (such as a hearing aid) and one or more hearing instrument accessories over a radio frequency communications channel, with the protocol adapted to provide for shared transmission channel access.

What will be described is one approach to such a wireless communication protocol. Changes to order of bits, number of bits, purpose, contents, order of procedures, error checking procedures, and processes set forth can be made without departing from the scope of the present subject matter. It is believed that one of skill in the art upon reading and understanding this document will understand variations that do not depart from the teachings provided herein. The following wireless communication protocol is therefore intended to be demonstrative of only one embodiment and not exhaustive or exclusive of the approaches provided by the present teachings.

The example wireless communication protocol communicates information in the form of packets or frame format. A frame is delimited at the beginning using a start flag. The frame start flag is preceded by the preamble for the purpose of establishing symbol timing. A general frame format is shown in Table 1.

TABLE 1

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Communication system for wireless audio devices patent application.
###
monitor keywords

Browse recent Starkey Laboratories, Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Communication system for wireless audio devices or other areas of interest.
###


Previous Patent Application:
Systems, methods, and article of manufacture for configuring a hearing prosthesis
Next Patent Application:
Hearing aid
Industry Class:
Electrical audio signal processing systems and devices
Thank you for viewing the Communication system for wireless audio devices patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.14356 seconds


Other interesting Freshpatents.com categories:
Qualcomm , Schering-Plough , Schlumberger , Texas Instruments ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2968
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20130004002 A1
Publish Date
01/03/2013
Document #
13458304
File Date
04/27/2012
USPTO Class
381315
Other USPTO Classes
International Class
04R25/00
Drawings
16


Your Message Here(14K)


Audio
Communications
Communication System
Hearing
Streaming
Wireless


Follow us on Twitter
twitter icon@FreshPatents

Starkey Laboratories, Inc.

Browse recent Starkey Laboratories, Inc. patents

Electrical Audio Signal Processing Systems And Devices   Hearing Aids, Electrical   Remote Control, Wireless, Or Alarm