stats FreshPatents Stats
1 views for this patent on
2013: 1 views
Updated: November 16 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Apparatus and process for separating carpet fibers

last patentdownload pdfdownload imgimage previewnext patent

20120325947 patent thumbnailZoom

Apparatus and process for separating carpet fibers

Apparatus for separating components of post-consumer carpet—pile, adhesive, and primary/secondary backings—may initially comprise spectrographic face fiber identification. Separating substantial portions of pile from backing comprises feeding carpeting into a rotating pinned drum, with separated pile U's dropping, while a residual composition, being primarily backing, travels with the drum, to be separated therefrom using vacuum pressure, with the composite backing being sent to a press. Vacuum pressure delivers the separated U's to a spinning perforated squirrel cage to remove dislodged pieces of adhesive, by vacuum pressure applied to an interior top portion of the cage to draw pieces therein. Rotating the perforated squirrel cage, which is sealed on the exterior using a belt, permits the U's to drop into a hopper. A mesh shaker box vibrates to separate any remaining backing from the pile U's. Hammers in a fibermill remove remaining adhesive attached to the separated pile U fiber.
Related Terms: Shaker

Inventors: Frank Levy, Sergio Dell'Orco
USPTO Applicaton #: #20120325947 - Class: 241 81 (USPTO) - 12/27/12 - Class 241 

Solid Material Comminution Or Disintegration > Screens >With Separation Or Classification Of Material >Separator In Feed To Comminuting Zone

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120325947, Apparatus and process for separating carpet fibers.

last patentpdficondownload pdfimage previewnext patent


The present invention relates to improvements in carpet recycling and more particularly to post consumer carpet recycling wherein the post consumer carpet is more readily separated into its component polymeric materials.


Recycling of waste materials is ever increasing in popularity and mirrors the concerns that many people have for the environment. In some cities and regions, recycling is even mandatory. Very often, many people try to conserve natural resources and reuse components of products can help in that effort. One example of mandated recycling is illustrated by the many states that have enacted legislation requiring a deposit on the purchaser of beverage containers in the form of aluminum cans and plastic bottles. The production of aluminum from bauxite is a very energy intensive process and recycling of aluminum cans therefore a cost effective endeavor. Recycling of soda bottles made of polyethylene terephthalate (PET) is another area where recycling has been successfully applied.

Reusing the PET from beverage bottles to form carpet fibers is one area where recycling has achieved certain benefits. Besides reducing the cost of the raw materials, such recycling has also reduced the amount of materials being disposed within landfills. It is not uncommon for carpet manufacturers to use recycled two liter soda bottles in the production of polyester based carpeting. PET polyester carpet is manufactured with yarn created from reclaimed polyester resins.

Post consumer carpet recycling has not become very wide spread. Post consumer carpet refers to the carpet that had been installed in a house or office, but is in need of removal and replacement with new carpeting or other types of flooring. Until recently, once the carpet in a house or office had worn out and was removed, the only destination for disposal had been a landfill. Because of the type of ingredients used in carpet, i.e. thermoplastic polymeric materials, carpet materials are not very biodegradable, and once buried in a landfill, a carpet may take as much as 20,000 years to fully degrade. At the present time, nearly six billion pounds of carpet are discarded per year in the United States, and as landfill space becomes scarcer while petroleum based products become more expensive due to increased crude oil costs, the need to recycle post consumer carpet becomes more necessary and more cost effective.

Carpets like many other composite materials are difficult to recycle effectively because they comprise a number of components made from different materials that have been combined into a finished product. These individual components, once extracted from the post consumer carpet, have significantly more value than as the composite. Carpets are comprised of a backing which supports and hold together a plurality of fibers that extend from the backing, and which form the pile or surface that is walked on by the user. An adhesive based material may be used to secure the fibers to the backing, and is typically used to secure a secondary backing to the primary backing. Usually one type of polymeric material is used to make the fibers of the carpet pile, a different type of polymeric material is used to make the backing, while the adhesive used is frequently a third type of material. In many carpets, this face fiber that makes up the pile may be nylon, a polyolefin, a polyester, etc. The backing is usually a polypropylene material, although other materials may also be used. Because of the multiplicity of materials, carpet has been difficult to recycle into reusable constituent components because the materials that comprise the carpet can not be readily or easily separated into those individual polymers. While there are some uses for composite polymeric materials, the value of the recycled post consumer carpet increases significantly if the components are separated.

Because of the difficulties in separating the carpet components, some companies have resorted to reusing the carpet as a fuel, and burn the carpet as a source of heat instead of dumping it in a landfill. In the burning method of recycling, the carpet may be burned as a fuel and the heat is used to generate steam which can then be used to generate electricity. The heat generated by the burning carpet can also be used for other purposes. While this reduces landfill dumping, it is not an ideal means of recycling the carpet.

Another approach towards carpet recycling can include melting the carpet rather than burning it, and thereafter attempting to separate the components in the blend based upon their melting or vaporization points. But this process is energy intensive and requires complex equipment. This equipment necessary must prevent each of the distinctive material fibers from burning when, yet must allow them to be heated to the proper melting temperatures to facilitate separation of the components. Additionally, separating those melted composite of carpet materials is not easily performed. Because of the difficulty in separating the melted components of a carpet, this recycled material is usually not used for new carpet, but is instead used in such products like park benches, and other similar items where a blend of different polymers is not objectionable.


It is an object of the invention to provide a system for recycling portions of carpets.

It is an object of the invention to provide an apparatus for recycling post consumer carpet.

It is also an object of the invention to provide a system for mechanically separating carpet components for recycling.

It is a further object of the invention to separate unsheared U\'s (the long U\'s) comprising the carpet pile from the backing.

It is a still further object of the invention to separate sheared U\'s (short U\'s) of carpet pile from the carpet backing.

It is another object of the invention to separate the remnant fiber portions of the carpet backing material from the U\'s.

It is a further object of the invention to separate the remaining adhesive still attached to the separated U\'s.

Further objects and advantages of the invention will become apparent from the following description and claims, and from the accompanying drawings.



A carpet recycling apparatus, for use in separating pile, backing, and adhesive of post-consumer carpet may comprises three or four different stages of apparatus performing distinctly different operations. An important step in recycling post-consumer carpet involves identifying the particular fiber used in the carpet pile. Herein a sensor may be used to accomplish near infrared reflectance (NIR) or Raman spectroscopy, to identify the spectral signature of the particular polymer molecules of the pile currently being recycled by the apparatus. The sensor may be hand held and comprise a separate first stage, or the sensor may alternatively be integral to any one of the other three stages of the process.

A second stage apparatus may be for use in mechanically separating a substantial portion of pile from the backing(s). The second stage apparatus may consist of a drum having a cylindrical outer surface, with the drum being rotatably mounted, and with it comprising a plurality of pins protruding outward from the cylindrical surface. The pins may be generally equally spaced circumferentially about the cylindrical outer surface, and may be generally equally spaced laterally across the cylindrical surface. A curved feed dish may have a first end and a second end, with the second end terminating in proximity to the drum, and comprising a sharp edge. The feed dish may comprise curvature having a tangency being approximately tangent to a cylindrical surface formed by the ends of the plurality of pins.

To be able to easily feed post-consumer carpet into the apparatus at a reasonable rate, a feed belt revolving about a pair of rollers may be included. The feed belt may be as wide as the drum itself, which may be 12 feet wide to accommodate a full-width piece of post-consumer carpet to be processed without the need for it to be trimmed into smaller sections prior to recycling. One or more rollers being positioned proximate to the pinned drum, direct the carpet against the feed dish, whose curvature causes the carpet to engage the pins of the drum at an optimal angle for removal of the U\'s of the pile, and for shredding of the backing. A pile rejecting plate being in close proximity to said pins of the drum directs the rejected U\'s into a receptacle. A guide member may serve to help retain the shredded backing on the rotating drum, while pieces of dislodged adhesive may fall through perforations in the guide member for collection in a bin. Beyond the perforations, a source of negative pressure may be used to draw the shredded backing away from the drum and into a chute. The shredded backing may actually be a residual composite material comprising mainly the primary and secondary backing, as well as small pieces of remnant pile that remains attached to the shredded backing by the adhesive. The shredded backing may be sent to a press, while the separated U\'s, which may also comprise remnant backing fibers and some adhesive, is sent to the next stage for processing.

The first part of the third stage apparatus may comprise a condensing apparatus, which may be for use in drawing away any pieces of adhesive that was dislodged during from the pile U\'s during vacuum transportation to the third stage. A perforated squirrel cage divided into an upper portion and a lower portion may be used, by applying vacuum pressure to the sealed upper portion to draw away the dislodged pieces of adhesive. The U\'s may then drop into a buffer section, which may contain a series of paddle wheels usable to direct the pile U\'s into a weight pan, when necessary for a processing cycle. When the weight pan has received a set amount of material, it may open to drop that weight of residual composite material into a shaker pen. The shaker pen is usable for separating remnant backing fibers from the pile U\'s. The shaker pen comprises one or more walls having a top opening and a bottom opening, with the bottom opening of the shaker pen being covered by a pivotable mesh. The top opening may be sealed by a door. Shaking or vibrating of the shaker pen causes the remnant backing fibers to become dislodged from the U\'s, leaving the smaller U\'s to fall through the mesh openings, to be directed by a deflecting plate into a first conduit. After a set time period, after which most of the pile has been dislodged and removed, the mesh pivots to release the remaining backing fiber, which is then directed by the deflector plate into a second conduit.

A fourth stage of the process may be for use in mechanically separating a substantial portion of remaining adhesive from the separated pile U\'s. Removal of the adhesive still attached to the U\'s may occur through timed treatment of the U\'s through a hammering operation within a fibermill, after which the fiber may be ducted outward from the fibermill using vacuum pressure, while the crushed adhesive falls through a grill. A final step in the process may comprise baling, pelletizing, or agglomerating the separated post-consumer carpet components.


FIG. 1A is a perspective view of a representative section of carpet having loop pile face yarn.

FIG. 1B is a perspective view of a representative section of carpet having cut pile face yarn.

FIG. 2 is a side view showing the apparatus used at each stage of the recycling process in a second embodiment of the current invention, having a buffer silo in the third stage, and using a condenser at each of the third and fourth stages.

FIG. 2A is a side view showing the apparatus used at each stage of the recycling process in a first embodiment of the current invention, having a horizontal buffer arrangement, and using a condenser at each of the third and fourth stages.

FIG. 2B is a side view showing the apparatus used at each stage of the recycling process in a third embodiment of the current invention, having a horizontal buffer arrangement, and being without use of a condenser prior to the third and fourth stages.

FIG. 3 is an enlarged view of the second stage apparatus of FIG. 2.

FIG. 4 is a detail view of a portion of the apparatus of FIG. 3.

FIG. 4A is an enlarged view of the feed dish of FIG. 4.

FIG. 5 is an enlarged view of the third stage apparatus of FIG. 2.

FIG. 6 is an enlarged view of condenser portion of the apparatus of FIG. 2.

FIG. 7 is a detail view of the apparatus of FIG. 5 below the hopper section.

FIG. 8 is an enlarged view of the weight pan portion of the apparatus of FIG. 5.

FIG. 9 is an enlarged view of the fourth stage apparatus of FIG. 2.

FIG. 10 is an enlarged view of the third stage apparatus of FIG. 2A.

FIG. 11A is a front view of the willow cleaner of the current invention.

FIG. 11B is a side view of the willow cleaner of FIG. 11A.

FIG. 11C is a top view of the willow cleaner of FIG. 11B.



Carpet is made of dyed yarns, a primary backing onto which the yarn is attached or sewn, a secondary backing to provide strength and stability, and an adhesive to secure the yarn and to secure the primary and secondary backings together. The primary and secondary backing are mostly made from woven or nonwoven polypropylene, but the secondary backings may, in some instances, be made of kraftcord, cotton, or jute, which is a natural fiber that resembles burlap. The adhesive used to join the primary and secondary backings is usually a synthetic rubber latex that incorporates calcium carbonate to enhance viscosity and volume of the adhesive.

There are several ways to manufacture the carpet 10, including tufting, weaving, knitting, needle punching, fusion bonding, and flocking. In the United States, roughly 90-95% of the carpet is manufactured using a tufting machine. A tufting machine is basically a large sewing machine, usually 12 feet wide, and having between 800 to 2000 needles across the machine\'s width to insert loops of yarn into the primary backing. When the needles penetrate the backing, a hook, known as a “looper,” grabs the yarn and holds it to create what is referred to as loop pile construction. In another style, the looper rocks to force the yarn against a knife, resulting in the cutting of the small loops of yarn, creating what is referred to as cut pile carpet. Next, a coat of adhesive is applied to the rear surface of the primary backing to secure the face yarn in place (the yarn protruding out from the front surface of the primary backing), and a coat of adhesive is applied to the secondary backing to secure it to the primary backing. The primary and secondary backings are then squeezed together using a heated press.

FIG. 1B shows a representative perspective view of a loop pile carpet 10L, while FIG. 1A shows a cut-pile carpet section 10, and the individual components that make up the piece of carpet. The carpet section 10 may have a primary backing 11P to which is secured the cut pile yarn, each of which may then be in the form of a “U” 12, and which has adhesive 13 applied on the back surface to secure the face yarn, and a secondary backing 11S which has adhesive 14 applied thereto. The two legs of the “U” that protrude from the face (front) of the primary backing may extend outwardly from the primary backing 11P to be any desired length.

As part of a recycling process, the majority of the face yarn may be sheared off, for example, to the height shown by dashed line 16 in FIG. 1A, or the carpet may be unsheared. Naturally, when the carpet is unsheared, the U\'s 12 to be recycled will be relatively longer, and conversely, if the face yarn has been sheared, then the U\'s will be shorter. In a conventional recycling process, the face fibers are removed by shearing for reuse, while the remaining portion, comprising the backing and remnants of the face fibers still secured thereto by the adhesive, are recycled as a composite material, which only has limited use and less value. Both phases of post consumer carpeting—the sheared pile and the unsheared pile carpeting—may be recycled using the apparatus and process disclosed herein. However, shearing of loop pile carpeting prior to processing by the apparatus disclosed herein, significantly improves the performance of the process.

The fiber of the carpet recycled by this apparatus and process may be any type of carpet material. Therefore, for efficient allocation of the recycled fibers to the end user, a first stage of the process may include having the carpet to be recycled, being sorted and then processed according to the chemical nature of at least the face yarn. The face yarn fiber may include, but not be limited to, nylon (nylon 6, nylon 6.6, . . . ), polyester, wool, silk, polyolefin, polyvinyl chloride, acrylic, etc. Each fiber type may be reliably and properly identified using a burn test. The burn test requires use of a butane lighter, as a butane flame is odorless, and will therefore not mask the odor of the burning fiber, which is one of the identifying burn characteristics of the fibers, along with color, disintegration type (burn/melt), etc. To better accommodate both accurate and rapid, on-the-fly fiber identification, a sensor 18 may preferably be used to accomplish spectroscopy. The sensor 18, using near infrared reflectance (NIR) or Raman spectroscopy, may be used to identify the spectral signature of the particular polymer molecules of the carpet fiber currently being recycled by the apparatus. Near-infrared reflectance spectroscopy is a rapid and non-destructive technique that involves analysis of diffuse-reflectance measurements using light in the near infrared region (generally having wavelengths of 1000-2500 nm), where the reflectance depends upon the number and type of chemical bonds in the carpet material being analyzed. Raman spectroscopy is a spectroscopic technique that studies vibrational, rotational, and other low-frequency modes of a system, and relies upon inelastic scattering (Raman Scattering) of monochromatic light- light being in the visible, near infrared, or near ultraviolet range, and usually being from a laser. The laser light interacts with molecules in the system, with the result being that the energy of the laser photons are shifted up or down, which provides information about the material.

The sensor 18 may be a handheld sensor, or alternatively, the sensor may be affixed to a mechanical portion of an early stage, middle stage, or a later stage of the processing, to signal the type of carpet fibers being recycled in order to direct the material placement in appropriate storage bins or to be directed for further processing. One sensor usable therein, merely to be exemplary, is available from, and manufactured by, Axsun Technologies, Bilerica, Mass., (see technical data at, the disclosures of which are incorporated herein by reference).

FIG. 2 depicts apparatus 5 that forms a first embodiment of a recycling process according to the current invention, which includes a carpet fiber identification sensor 18 in the first stage, and which may further include a second stage apparatus 6, a third stage apparatus 7, and a fourth stage apparatus 8. Between each of the stages may be a willow cleaner 9. FIG. 2A illustrates an alternate embodiment 5A, having differences which will be discussed later.

The apparatus 6 of the second stage is shown enlarged in FIG. 3. The second stage apparatus may be usable for mechanically separating a substantial portion of the pile fibers—the U\'s—from the backing, and although it is not required for successful operation of the recycling process herein, it may optionally include a carpet feed belt 21 that may be any suitable length or width, and in one embodiment may be roughly twelve feet wide to match the standard width of rolled pre-consumer carpet. The feed belt 21 eases the introduction of the carpet 10 into the apparatus 6. Therefore, the sections of carpet to be recycled using the present invention are not limited to narrow strips, and may instead be rolled up sections of 12 foot wide carpeting that may be unrolled as it is fed into the second stage apparatus 6. The carpet 10 to be recycled may be positioned on the feed belt 21 such that the face yarn is flush against the belt, while the backing 11 is distal from the belt and is upwardly exposed. This positioning of the carpet to be recycled results in the U\'s being hooked away by pins on a drum, as described hereinafter. The feed belt 21 may circulate about two belt support rollers, 21A and 21B.

As seen in the enlarged view in FIG. 4, at one end of the feed belt 21 there may be a pressing roller 22 that keeps the carpet section positioned on the feed belt. The pressing roller 22 may be positioned near the end of the belt above the belt support roller 21B. The feed belt 21 assists in delivering the carpet section 10 to a pair of rollers, which may be nip rollers or feed rollers. In one embodiment, there may be a top feed roller 23 and a bottom feed roller 24. The top feed roller 23 and bottom feed roller 24 may direct the carpet section to a feed dish 25. The feed dish 25 preferably has a length corresponding to the axial length of the main drum 28. The feed dish 25 may comprise a curved surface 26, which generally conforms to the diameter of the upper feed roller 23. At the upper end of the feed dish 25 may be an edge 27 (FIG. 4A). The feed dish may serve to strongly hold the carpet between the top feed roller and the edge 27 of the edge itself, while the pins of the drum tear apart the carpet.

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Apparatus and process for separating carpet fibers patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Apparatus and process for separating carpet fibers or other areas of interest.

Previous Patent Application:
Electric kitchen appliance comprising a pressing screw and a pre-cutting device
Next Patent Application:
Combination food processing machine
Industry Class:
Solid material comminution or disintegration
Thank you for viewing the Apparatus and process for separating carpet fibers patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.66396 seconds

Other interesting categories:
Tyco , Unilever , 3m


Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. Terms/Support

Key IP Translations - Patent Translations

stats Patent Info
Application #
US 20120325947 A1
Publish Date
Document #
File Date
241 81
Other USPTO Classes
International Class


Follow us on Twitter
twitter icon@FreshPatents