stats FreshPatents Stats
1 views for this patent on
2013: 1 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

System and method for hierarchical visualization of data

last patentdownload pdfdownload imgimage previewnext patent

20120324360 patent thumbnailZoom

System and method for hierarchical visualization of data

A system and method for monitoring IP flows in a network is disclosed. A plurality of monitor probes are coupled to links in the network, the monitor probes capture data packets from the links and determine protocols in OSI Layers 3, 4, and 5/7 of the packets. A user interface receives user inputs selecting the links and protocols for analysis. A display is coupled to the monitor probes and the user interface. The display and user interface receiving a user selection of links for analysis and display a first protocol analysis to the user, the first protocol analysis display comprising a pie chart representing all OSI Layer 3 protocols captured on the selected links, a pie chart representing all OSI Layer 4 protocols captured on the selected links, and a pie chart representing all OSI Layer 5/7 protocols captured on the selected links.

Browse recent Tektronix, Inc. patents - Beaverton, OR, US
Inventors: Jason A. Young, Sunil L. Mandya
USPTO Applicaton #: #20120324360 - Class: 715736 (USPTO) - 12/20/12 - Class 715 
Data Processing: Presentation Processing Of Document, Operator Interface Processing, And Screen Saver Display Processing > Operator Interface (e.g., Graphical User Interface) >For Plural Users Or Sites (e.g., Network) >Interactive Network Representation Of Devices (e.g., Topology Of Workstations) >Network Managing Or Monitoring Status

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120324360, System and method for hierarchical visualization of data.

last patentpdficondownload pdfimage previewnext patent


Embodiments are directed, in general, to displaying network data to users and, more specifically, to displaying network data in a hierarchical format.


Fixed and wireless telecommunications networks comprise many network nodes interlinked by high speed interfaces. The interfaces transport control plane and user plane data packets across the telecommunications networks. Typical network interfaces may be 10GE links supporting thousands of subscriber sessions, wherein each session uses one of many different protocols. Network operators may use monitoring equipment to analyze the network\'s performance. The monitoring equipment captures data packets from the links and presents the data to a user. The volume of data captured from the links is enormous and includes information for each of the OSI (Open Systems Interconnection) layers of the protocols used in thousands of sessions.

Presenting the data captured from network links to users in a manner that is understandable and useful is difficult to achieve because there is simply too much data to display to the user. The amount of data can overwhelm the user and important data becomes buried.


Visualizing hierarchical data in a way that does not overwhelm a user is a problem that needs to be solved. In many cases, there is simply too much data to display to the user, and what is important becomes buried.

Traditionally, display of hierarchical data is shown in some kind of tabular or tree format. Displaying hierarchical data in this way can overwhelm because there is too much data to display to the user, and what is important becomes buried. Embodiments of the present invention are directed to a new way of displaying hierarchical data that is based on the concept of progressive disclosure. The tree concept has been taken and expanded upon, using traditional pie charts to represent each level in a hierarchical data structure.

At the root node of the hierarchical data, the pie chart will contain at most N+1 slices in which the top N categories are displayed, and the last (N+1) slice represents one or more categories that are outside of the “top N”. This segment is known as the “other” category and is represented as the summary of these remaining categories.

Subsequent levels or cross-sections of the hierarchical data are represented as additional pie charts. The initial representation given to these pie charts reflects a summary of categories present at that level regardless of parent node. The subsequent levels also contain the N+1 segmenting concept explained above.

Embodiments of the invention comprise the ability to select (e.g. “click” on) a slice in each pie chart to select the represented protocol segment. This selection changes the data being shown by the pie charts to reflect data from deeper levels of the hierarchical structure. The selection acts as a filter to the lower level data. On selection, the selected slice is highlighted or shown in an exploded view on the display to indicate selection. Selecting a segment a second time acts to deselect the protocol. The lowest level of pie chart does not include this filter capability. Selection at this level can be interpreted as a drilldown to other applications or pages of data.


Having thus described the system and method in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:

FIG. 1 illustrates an exemplary data network;

FIG. 2 illustrates an exemplary display according to embodiments of the invention;

FIG. 3 illustrates another exemplary display according to embodiments of the invention; and

FIG. 4 illustrates another exemplary display according to embodiments of the invention.


FIG. 1 illustrates an exemplary data network 100 in which users at devices 101-103 access data or applications on servers 104-107 via nodes 108-110 across links 111-112. FIG. 1 is a high-level representation of a data network for discussion purposes only and is not intended to limit the inventions disclosed herein to any particular network or protocol. Devices 101-103 may be computers, mobile devices, user equipment (UE), or client applications, for example. Nodes 108-110 and links 111-112 may represent a single service provider\'s network or may represent components of multiple networks. For example, node 108 may be part of a wireless or cellular network, such as a wireless access point, cellular system base station or node B, and/or part of an internet service provider\'s (ISP) network, such as a router or modem. Devices 101-103 access node 108 via wireless or wireline connections 114-116. Nodes 109-110 may be components in an intranet, Internet, or public data network, such as a router or gateway. Nodes 109-110 may also be components in a 3G or 4G wireless network, such as a Serving GPRS Support Node (SGSN), Gateway GPRS Support Node (GGSN) or Border Gateway in a General Packet Radio Service (GPRS) network, Packet Data Serving Node (PDSN) in a CDMA2000 network, or a Mobile Management Entity (MME) in a Long Term Evolution/Service Architecture Evolution (LTE/SAE) network, for example, or any other data network component.

Many packets traverse links 111-112 and nodes 108-110 as data is exchanged between devices 101-103 and servers 104-107. These packets may represent many different sessions and protocols. For example, if device 103 is used for a voice or video call, then device 103 may exchange Voice over Internet Protocol (VoIP) or Session Initiation Protocol (SIP) data packets with SIP/VoIP server 104 using Real-Time Transport Protocol (RTP). If device 102 is used to send or retrieve email, device 102 may exchange Internet Message Access Protocol (IMAP), Post Office Protocol 3 Protocol (POP3), or Simple Mail Transfer Protocol (SMTP) messages with email server 106. If device 101 is used to down load or stream video, device 101 may use Real Time Streaming Protocol (RTSP) to establish and control media sessions with video server 105. Alternatively, the user at device 101 may access a number of websites using Hypertext Transfer Protocol (HTTP) to exchange data packets with web server 107. It will be understood that packets exchanged between devices 101-103 and servers 104-107 may conform to numerous other protocols now known or later developed. In an exemplary system, approximately one percent of the packets traversing network 100 carry control data, such as information for setting-up, managing or tearing-down calls or sessions between devices 101-103 and servers 104-107. The other ninety-nine percent of the packets carry user data, such as actual voice, video, email or information content to and from devices 101-103.

Network monitoring system 113 may be used to monitor the performance of network 100. Monitoring system 113 captures packets that are transported across links 111-112 and any other network links or connections. In one embodiment, packet capture devices are non-intrusively coupled to network links 111-112 to capture substantially all of the packets transmitted across the links. Although only two links 111-112 are shown in FIG. 1, it will be understood that in an actual network there may be dozens or hundreds of physical, logical or virtual connections and links between network nodes. In one embodiment, network monitoring system 113 is coupled to all or a high percentage of these links. In other embodiments, network monitoring system 113 may be coupled only to a portion of network 100, such as only to links associated with a particular service provider. The packet capture devices may be part of network monitoring system 113, such as a line interface card, or may be separate components that are remotely coupled to network monitoring system 113 from different locations.

Monitoring system 113 preferably comprises one or more processors running one or more software applications that collect, correlate and analyze media and signaling data packets from network 100. Monitoring system 113 may incorporate protocol analyzer, session analyzer, and/or traffic analyzer functionality that provides OSI (Open Systems Interconnection) Layer 2 to Layer 7 troubleshooting by characterizing IP traffic by links, nodes, applications and servers on network 100. Such functionality is provided, for example, by the Iris Analyzer toolset available from Tektronix, Inc. The packet capture devices coupling network monitoring system 113 to links 111-112 may be high-speed, high-density 10GE probes that are optimized to handle high bandwidth IP traffic, such as the GeoProbe G10 available from Tektronix, Inc. A service provider or network operator may access data from monitoring system 113 via user interface station 117 having a display or graphical user interface 118, such as the IrisView configurable software framework that provides a single, integrated platform for all applications, including feeds to customer experience management systems and operation support system (OSS) and business support system (BSS) applications, which is also available from Tektronix, Inc. Monitoring system 113 may further comprise internal or external memory 119 for storing captured data packets, user session data, call records and configuration information. Monitoring system 113 may capture and correlate the packets associated specific data sessions on links 111-112. In one embodiment, related packets can be correlated using a 5-tuple association mechanism. The 5-tuple association process uses an IP correlation key that consists of 5 parts—server IP address, client IP address, source port, destination port, and Layer 4 Protocol (TCP or UDP or SCTP). The related packets can be combined into a record for a particular flow, session or call on network 100.

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this System and method for hierarchical visualization of data patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method for hierarchical visualization of data or other areas of interest.

Previous Patent Application:
Systems and methods for monitoring and enhancing software applications
Next Patent Application:
Consumer-generated media influence and sentiment determination
Industry Class:
Data processing: presentation processing of document
Thank you for viewing the System and method for hierarchical visualization of data patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.56106 seconds

Other interesting categories:
Qualcomm , Schering-Plough , Schlumberger , Texas Instruments , -g2-0.243

FreshNews promo

stats Patent Info
Application #
US 20120324360 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Follow us on Twitter
twitter icon@FreshPatents