FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: July 25 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Vibrating mirror element

last patentdownload pdfdownload imgimage previewnext patent


20120320441 patent thumbnailZoom

Vibrating mirror element


This vibrating mirror element (100) includes a mirror portion (10), a first driving portion (41), being cantilevered, including a first fixed end (41a) formed on a first side of a first direction and a first free end (41b) formed on a second side thereof, and linearly extending, a first mirror support portion (46) capable of supporting the mirror portion (10) in an inclined state, a second driving portion (51), being cantilevered, including a second fixed end (51a) formed on the second side of the first direction and a second free end (51b) formed on the first side thereof, being point-symmetrical to the first driving portion with respect to the center of a mirror, and linearly extending, and a second mirror support portion (56) being point-symmetrical to the first mirror support portion with respect to the center of the mirror and capable of supporting the mirror portion in an inclined state.

Browse recent Funai Electric Co., Ltd. patents - Osaka, JP
Inventors: Isaku Kann, Hidetoshi Kotera, Manabu Murayama, Naoki Inoue
USPTO Applicaton #: #20120320441 - Class: 3592241 (USPTO) - 12/20/12 - Class 359 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120320441, Vibrating mirror element.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to a vibrating mirror element, and more particularly, it relates to a vibrating mirror element including a driving portion.

BACKGROUND ART

In general, a vibrating mirror element including a driving portion is known. Such a vibrating mirror element is disclosed in Japanese Patent Laying-Open Nos. 2009-169290 and 2007-188073, for example.

In the aforementioned Japanese Patent Laying-Open No. 2009-169290, there is disclosed an optical deflector including a pair of driving portions arranged along a direction X, a mirror portion arranged to be held between this pair of driving portions in the direction X and rotated by the pair of driving portions, and a support portion arranged to surround the pair of driving portions and the mirror portion along the direction X and a direction Y (direction orthogonal to the direction X in the same plane). First end portions of this pair of driving portions are connected with the mirror portion on a first side of the direction X and a second side thereof, respectively. Second end portions of the pair of driving portions are fixed by the support portion located on sides opposite to the mirror portion in the direction X. The pair of driving portions are arranged such that a plurality of piezoelectric actuators extending in the direction Y are arranged in the direction X, and the plurality of piezoelectric actuators are continuously connected in a state where end portions of the plurality of piezoelectric actuators are bent. The first end portions of the pair of driving portions of this optical deflector are connected with the mirror portion on corners of the mirror portion on a first side of the direction Y while the second end portions of the pair of driving portions are connected with the support portion on corners of the support portion on the first side of the direction Y.

In the aforementioned Japanese Patent Laying-Open No. 2007-188073, there is disclosed a two-axis micro scanner including a horizontal driving portion, a pair of first cantilevers arranged on a first side of the horizontal driving portion in a direction X and extending in the direction X, a pair of second cantilevers arranged on a second side of the horizontal driving portion in the direction X and extending in the direction X, a pair of first connectors connecting each of the pair of first cantilevers and the horizontal driving portion, a pair of second connectors connecting each of the pair of second cantilevers and the horizontal driving portion, and a frame arranged to surround the aforementioned all components along the direction X and a direction Y. The pair of first cantilevers and the pair of second cantilevers of this two-axis micro scanner are fixed to the frame on sides opposite to the first connectors and the second connectors, respectively, in the direction X. One of the pair of first cantilevers and one of the pair of second cantilevers are arranged on a first straight line extending in the direction X while the other of the pair of first cantilevers and the other of the pair of second cantilevers are arranged on a second straight line extending in the direction X.

PRIOR ART Patent Document

Patent Document 1: Japanese Patent Laying-Open No. 2009-169290 Patent Document 2: Japanese Patent Laying-Open No. 2007-188073

SUMMARY

OF THE INVENTION Problems to be Solved by the Invention

However, in the optical deflector described in the aforementioned Patent Laying-Open No. 2009-169290, the first end portions and the second end portions of the pair of driving portions are connected with the mirror portion and the support portion in positions (the corners of the mirror portion and the corners of the support portion) deviating to the first side of the direction Y with respect to the center of the mirror portion, and hence there is such a problem that the mirror portion is so inclined that a second side of the mirror portion in the direction X is located below a first side of the mirror portion in the direction X due to the own weight of the mirror portion in a state where the pair of driving portions are not driven (non-driven state).

In the two-axis micro scanner described in the aforementioned Japanese Patent Laying-Open No. 2007-188073, one of the pair of first cantilevers and one of the pair of second cantilevers are arranged on the first straight line extending in the direction X while the other of the pair of first cantilevers and the other of the pair of second cantilevers are arranged on the second straight line extending in the direction X, and hence there is such a problem that the size of the two-axis micro scanner is increased in the direction X (first direction) by the total of the increased length of the pair of first cantilevers and the increased length of the pair of second cantilevers when the length of the pair of first cantilevers in the direction X and the length of the pair of second cantilevers in the direction X are increased in order to improve driving force.

The present invention has been proposed in order to solve the aforementioned problems, and an object of the present invention is to provide a vibrating mirror element capable of being inhibited from lengthening in a first direction and capable of inhibiting a mirror portion from inclining in a non-driven state.

Means for Solving the Problems and Effects of the Invention

A vibrating mirror element according to an aspect of the present invention includes a mirror portion, a deformable first driving portion, being cantilevered, including a first fixed end formed on a first side of a first direction beyond a first end portion of the mirror portion on the first side of the first direction and a first free end formed on a second side of the first direction beyond a second end portion of the mirror portion on the second side of the first direction, and linearly extending along the first direction, a first mirror support portion capable of supporting the mirror portion in a state where the mirror portion is inclined in response to an inclination of the first free end in driving, a deformable second driving portion, being cantilevered, including a second fixed end formed on the second side of the first direction beyond the second end portion of the mirror portion on the second side of the first direction and a second free end formed on the first side of the first direction beyond the first end portion of the mirror portion on the first side of the first direction, being point-symmetrical to the first driving portion with respect to the center of the mirror portion, and linearly extending along the first direction, and a second mirror support portion being point-symmetrical to the first mirror support portion with respect to the center of the mirror portion and capable of supporting the mirror portion in a state where the mirror portion is inclined in response to an inclination of the second free end in driving.

In the vibrating mirror element according to the aspect of the present invention, as hereinabove described, the second driving portion is configured to be point-symmetrical to the first driving portion with respect to the center of the mirror portion, and the second mirror support portion is configured to be point-symmetrical to the first mirror support portion with respect to the center of the mirror portion, whereby the mirror portion can be supported by the first driving portion and the second driving portion that are point-symmetrical to each other and the first mirror support portion and the second mirror support portion that are point-symmetrical to each other in plan view. Thus, the own weight of the mirror portion can be evenly distributed to the first mirror support portion and the second mirror support portion, and hence the mirror portion can be inhibited from inclining in a non-driven state. Furthermore, the first driving portion and the second driving portion are point-symmetrical to each other so that the residual stress of the first driving portion and the residual stress of the second driving portion can offset each other, if residual stress is accumulated in the first driving portion and the second driving portion. Thus, the mirror portion can be inhibited from inclining in the non-driven state also according to this structure.

Furthermore, in the aforementioned vibrating mirror element according to the aspect of the present invention, the first fixed end of the first driving portion linearly extending along the first direction is formed on the first side of the first direction beyond the first end portion of the mirror portion on the first side of the first direction, the first free end thereof is formed on the second side of the first direction beyond the second end portion of the mirror portion on the second side of the first direction, the second fixed end of the second driving portion linearly extending along the first direction is formed on the second side of the first direction beyond the second end portion of the mirror portion on the second side of the first direction, and the second free end thereof is formed on the first side of the first direction beyond the first end portion of the mirror portion on the first side of the first direction, whereby the first driving portion and the second driving portion can be formed to extend from a first side of the mirror portion in the first direction toward a second side thereof. In other words, the first driving portion and the second driving portion can be aligned in a direction (second direction) orthogonal to the first direction to hold the mirror portion therebetween in the second direction. Thus, the first driving portion and the second driving portion are not arranged on a common straight line extending in the first direction, and hence the overall size of the vibrating mirror element is not increased in the first direction by the sum of increases in the lengths of the first driving portion and the second driving portion even if the lengths of the first driving portion and the second driving portion in the first direction are increased. Consequently, the size of the vibrating mirror element in the first direction can be inhibited from increase.

Preferably in the aforementioned vibrating mirror element according to the aspect, residual stress is accumulated in the first driving portion and the second driving portion, and the residual stress of the first driving portion and the residual stress of the second driving portion being point-symmetrical to the first driving portion with respect to the center of the mirror portion offset each other, so that the mirror portion is arranged parallel to a plane passing through the first fixed end of the first driving portion and the second fixed end of the second driving portion in the non-driven state of the first driving portion and the second driving portion. According to this structure, the mirror portion can be easily inhibited from inclining with respect to the plane passing through the first fixed end of the first driving portion and the second fixed end of the second driving portion in the non-driven state even if residual stress is accumulated in the first driving portion and the second driving portion.

Preferably in the aforementioned vibrating mirror element according to the aspect, the first driving portion further includes a first connecting portion formed on the side of the first free end, the second driving portion further includes a second connecting portion formed on the side of the second free end, and the first mirror support portion is configured to be capable of supporting the mirror portion in a state where the mirror portion is inclined in response to an inclination of the first connecting portion while the second mirror support portion is configured to be capable of supporting the mirror portion in a state where the mirror portion is inclined in response to an inclination of the second connecting portion. According to this structure, the first mirror support portion can support the mirror portion while at least the inclination of the first connecting portion is maintained, and the second mirror support portion can support the mirror portion while at least the inclination of the second connecting portion is maintained.

Preferably in the aforementioned vibrating mirror element according to the aspect, the first mirror support portion, the second mirror support portion, and the mirror portion are configured to be located on the same plane in an inclined state when the first driving portion and the second driving portion are driven while being deformed. According to this structure, the mirror portion can be stably inclined while the inclination of the first mirror support portion inclined in response to the inclination of the first driving portion, the inclination of the second mirror support portion inclined in response to the inclination of the second driving portion, and the inclination of the mirror portion are maintained to be the same as each other.

Preferably in the aforementioned vibrating mirror element according to the aspect, the first driving portion and the second driving portion are configured to be deformed in warping directions opposite to each other to be driven. According to this structure, in the structure in which the first mirror support portion and the second mirror support portion are arranged to be point-symmetrical to each other, the first mirror support portion inclined in response to the deformation of the first driving portion and the second mirror support portion inclined in response to the deformation of the second driving portion can be easily inclined in the same direction, and hence the mirror portion supported by the first mirror support portion and the second mirror support portion can be easily inclined in a prescribed direction.

Preferably in the aforementioned vibrating mirror element according to the aspect, the first driving portion and the second driving portion are configured to be driven by voltage application, and voltages opposite in phase to each other are applied to the first driving portion and the second driving portion. According to this structure, the first driving portion and the second driving portion can be easily deformed to warp in directions different from each other. Thus, the first free end of the first driving portion and the second free end of the second driving portion can be displaced to the same extent in directions opposite to each other with reference to positions thereof in the non-driven state. Consequently, the first mirror support portion inclined in response to the inclination of the first free end of the first driving portion and the second mirror support portion being point-symmetrical to the first mirror support portion and inclined in response to the inclination of the second free end of the second driving portion can be inclined at substantially the same inclination angle. Therefore, the mirror portion supported by the first mirror support portion and the second mirror support portion can be inclined in the prescribed direction.

Preferably, the aforementioned vibrating mirror element according to the aspect further includes at least one deformable third driving portion arranged between the first driving portion and the first mirror support portion and linearly extending along the first direction, an inclinable first support portion, the number of which is equal to the number of the third driving portions, arranged between the first driving portion and the first mirror support portion and linearly extending along the first direction, a deformable fourth driving portion being point-symmetrical to the third driving portion with respect to the center of the mirror portion, arranged between the second driving portion and the second mirror support portion, and linearly extending along the first direction, and an inclinable second support portion being point-symmetrical to the first support portion with respect to the center of the mirror portion, arranged between the second driving portion and the second mirror support portion, and linearly extending along the first direction. According to this structure, the overall vibrating mirror element further including the third driving portion, the first support portion, the fourth driving portion, and the second support portion can be configured to be point-symmetrical, and hence the first mirror support portion and the second mirror support portion being point-symmetrical to the first mirror support portion with respect to the center of the mirror portion can equally support the mirror portion. Furthermore, in addition to the first driving portion and the second driving portion, the third driving portion and the fourth driving portion are driven, whereby the mirror portion can be inclined to have a larger inclination angle in driving.

Preferably in this case, the first mirror support portion, the second mirror support portion, the first support portion, and the second support portion are configured to be applied with no voltage and to be unwarped by the absence of a voltage. According to this structure, the first mirror support portion, the second mirror support portion, the first support portion, and the second support portion can maintain inclination angles without warping.

Preferably in the aforementioned structure further including the third driving portion and the fourth driving portion, the first driving portion, the second driving portion, the third driving portion, and the fourth driving portion are configured to be driven by voltage application, and a voltage applied to the first driving portion and the third driving portion and a voltage applied to the second driving portion and the fourth driving portion are opposite in phase to each other. According to this structure, the first and third driving portions and the second and fourth driving portions can be easily deformed to warp in directions different from each other. Thus, the first free end of the first driving portion and the second free end of the second driving portion can be displaced to the same extent in the directions opposite to each other with reference to the positions thereof in the non-driven state. Furthermore, the third driving portion and the fourth driving portion can be displaced to the same extent in directions opposite to each other with reference to positions thereof in a non-driven state. Consequently, the first mirror support portion and the second mirror support portion being point-symmetrical to the first mirror support portion can be inclined at substantially the same inclination angle. Therefore, the mirror portion supported by the first mirror support portion and the second mirror support portion can be easily inclined to have a large inclination angle in the prescribed direction.

Preferably in the aforementioned structure further including the third driving portion and the fourth driving portion, the third driving portion and the first support portion are connected to each other by alternately successively bending adjacent portions on either the first side of the first direction or the second side thereof in a state where the third driving portion and the first support portion are alternately arranged from the side of the first mirror support portion toward the side of the first driving portion along the second direction orthogonal to the first direction, so that portions from the first mirror support portion to the first driving portion are continuously connected, and the fourth driving portion and the second support portion are connected to each other by alternately successively bending adjacent portions on either the first side of the first direction or the second side thereof in a state where the fourth driving portion and the second support portion are alternately arranged from the side of the second mirror support portion toward the side of the second driving portion along the second direction, so that portions from the second mirror support portion to the second driving portion are continuously connected. According to this structure, the third driving portion can be driven on the basis of the displacement of the connecting portion of the first driving portion and the first support portion while the fourth driving portion can be driven on the basis of the displacement of the connecting portion of the second driving portion and the second support portion, and hence the inclination angles of the first mirror support portion and the second mirror support portion can be further increased. Thus, the inclination angle of the mirror portion can be further increased.

Preferably in the aforementioned vibrating mirror element including the third driving portion, the first support portion, the fourth driving portion, and the second support portion, the first driving portion further includes a first connecting portion formed on the side of the first free end, the second driving portion further includes a second connecting portion formed on the side of the second free end, the third driving portion includes a third connecting portion connected with the first support portion or the first mirror support portion adjacent thereto on a side closer to the mirror portion in the second direction, the fourth driving portion includes a fourth connecting portion connected with the second support portion or the second mirror support portion adjacent thereto on a side closer to the mirror portion in the second direction, the first driving portion is configured to be connected with the first support portion adjacent thereto on the first connecting portion while the second driving portion is configured to be connected with the second support portion adjacent thereto on the second connecting portion, the inclination angle of the first mirror support portion with respect to the tangent line of the first fixed end of the first driving portion is the sum of the inclination angle of the first connecting portion with respect to the tangent line of the first fixed end of the first driving portion and the inclination angle of the third connecting portion of the third driving portion with respect to the first support portion adjacently located on a side closer to the first driving portion in the second direction, and the inclination angle of the second mirror support portion with respect to the tangent line of the second fixed end of the second driving portion is the sum of the inclination angle of the second connecting portion with respect to the tangent line of the second fixed end of the second driving portion and the inclination angle of the fourth connecting portion of the fourth driving portion with respect to the second support portion adjacently located on a side closer to the second driving portion in the second direction. According to this structure, the inclination angle of the first mirror support portion with respect to the tangent line of the first fixed end can be obtained by adding the inclination angle based on the first driving portion and the inclination angle based on the third driving portion while the inclination angle of the second mirror support portion with respect to the tangent line of the second fixed end can be obtained by adding the inclination angle based on the second driving portion and the inclination angle based on the fourth driving portion, and hence the inclination angles of the first mirror support portion and the second mirror support portion can be further increased. Thus, the inclination angle of the mirror portion can be further increased.

Preferably in this case, the third driving portion includes a fifth connecting portion connected with the first support portion adjacent thereto on the side closer to the first driving portion in the second direction, the fourth driving portion includes a sixth connecting portion connected with the second support portion adjacent thereto on the side closer to the second driving portion in the second direction, when the third driving portion is applied with a voltage to be driven, the first support portion is undeformed, and the third driving portion is deformed with reference to the fifth connecting portion, and when the fourth driving portion is applied with a voltage to be driven, the second support portion is undeformed, and the fourth driving portion is deformed with reference to the sixth connecting portion. According to this structure, the third driving portion (fourth driving portion) can be deformed with reference to the fifth connecting portion (sixth connecting portion) to be further inclined with respect to the tangent line of the first fixed end of the first driving portion (second fixed end of the second driving portion). Thus, the inclination angles of the first mirror support portion and the second mirror support portion can be easily further increased. Consequently, the inclination angle of the mirror portion can be further increased.

Preferably in the aforementioned structure in which the third driving portion and the fourth driving portion include the third connecting portion and the fourth connecting portion, respectively, the inclination angle of the first connecting portion with respect to the tangent line of the first fixed end of the first driving portion is equal to the inclination angle of the second connecting portion with respect to the tangent line of the second fixed end of the second driving portion, and the inclination angle of the third connecting portion of the third driving portion with respect to the first support portion adjacently located on the side closer to the first driving portion in the second direction is equal to the inclination angle of the fourth connecting portion of the fourth driving portion with respect to the second support portion adjacently located on the side closer to the second driving portion in the second direction. According to this structure, the sum of the inclination angle of the first connecting portion with respect to the tangent line of the first fixed end of the first driving portion and the inclination angle of the third connecting portion of the third driving portion with respect to the first support portion adjacently located on the side closer to the first driving portion in the second direction and the sum of the inclination angle of the second connecting portion with respect to the tangent line of the second fixed end of the second driving portion and the inclination angle of the fourth connecting portion of the fourth driving portion with respect to the second support portion adjacently located on the side closer to the second driving portion in the second direction can be rendered equal to each other. Thus, the inclination angle of the first mirror support portion and the inclination angle of the second mirror support portion can be rendered equal to each other.

Preferably in the aforementioned vibrating mirror element according to the aspect, the mirror portion is configured to rotate about a first rotation center axis, and the mirror portion includes a mirror and a fifth driving portion rotating the mirror about a second rotation center axis orthogonal to the first rotation center axis in the in-plane direction of the mirror. According to this structure, the mirror can accurately reflect light about the first rotation center, and the vibrating mirror element capable of two-dimensionally optically scanning an object can be obtained.

Preferably in this case, the first driving portion and the second driving portion are configured to rotate the mirror portion about the first rotation center axis on the basis of a first frequency, and the fifth driving portion is configured to rotate the mirror about the second rotation center axis on the basis of a second frequency larger than the first frequency. According to this structure, the vibrating mirror element can two-dimensionally optically scan the object while the mirror portion is configured to rotate at a larger frequency about the second rotation center axis than about the first rotation center axis.

Preferably in the aforementioned structure in which the mirror portion rotates about the first rotation center axis, the first rotation center axis passes through middle portions of the first driving portion and the second driving portion in the first direction in the non-driven state of the first driving portion and the second driving portion. According to this structure, the first driving portion and the second driving portion can be driven in the first direction in a balanced manner.

Preferably in the aforementioned structure in which the mirror portion rotates about the first rotation center axis, a pair of the fifth driving portions are provided to hold the mirror therebetween in the second direction orthogonal to the first direction, and formed to protrude toward the mirror in the vicinity of the first rotation center axis. According to this structure, the width of the fifth driving portion in the vicinity of the first rotation center axis is increased, and hence the mechanical strength of the fifth driving portion deformed in driving can be increased.

Preferably in the aforementioned structure in which the mirror portion rotates about the first rotation center axis, the mirror portion includes a frame body supported by the first mirror support portion and the second mirror support portion, and the frame body has a thickness larger than the thicknesses of other portions of the mirror portion. According to this structure, the mechanical strength of the frame body is increased, and hence the frame body can be inhibited from twisting. Consequently, the mirror portion can be inclined at a prescribed inclination angle in a stable state.

Preferably in the aforementioned vibrating mirror element according to the aspect, the first driving portion, the first mirror support portion, the second driving portion, the second mirror support portion, and the mirror portion are integrally formed. According to this structure, no connection between each portion may be made separately, and hence the number of steps of manufacturing the vibrating mirror element can be reduced.

Preferably in the aforementioned vibrating mirror element according to the aspect, each of the first driving portion and the second driving portion further includes a driving section having an electrode, an insulating layer formed on a surface of the driving section and having a contact hole, and a wiring portion formed to extend on a surface of the insulating layer and connected with the electrode of the driving section through the contact hole. According to this structure, a voltage can be easily applied to the electrode of the driving section of each of the first driving portion and the second driving portion through the wiring portion and the contact hole.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 A perspective view showing the structure of a vibrating mirror element according to an embodiment of the present invention.

FIG. 2 A plan view showing the structure of the vibrating mirror element according to the embodiment of the present invention.

FIG. 3 A side elevational view of the vibrating mirror element shown in FIG. 2 as viewed in a direction E (direction F).

FIG. 4 An enlarged sectional view of the vibrating mirror element taken along the line 1000-1000 shown in FIG. 2.

FIG. 5 An enlarged sectional view of the vibrating mirror element taken along the line 2000-2000 shown in FIG. 2.

FIG. 6 An enlarged sectional view of the vibrating mirror element taken along the line 3000-3000 shown in FIG. 2.

FIG. 7 An enlarged sectional view of the vibrating mirror element taken along the line 4000-4000 shown in FIG. 2.

FIG. 8 An enlarged sectional view of the vibrating mirror element taken along the line 5000-5000 shown in FIG. 2.

FIG. 9 An enlarged sectional view showing a portion around a piezoelectric actuator of the vibrating mirror element according to the embodiment of the present invention.

FIG. 10 A perspective view showing a state where the vibrating mirror element according to the embodiment of the present invention is inclined at a prescribed inclination angle along arrow B1.

FIG. 11 A side elevational view showing the state where the vibrating mirror element according to the embodiment of the present invention is inclined at the prescribed inclination angle.

FIG. 12 A side elevational view showing the state where the vibrating mirror element according to the embodiment of the present invention is inclined at the prescribed inclination angle.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Vibrating mirror element patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Vibrating mirror element or other areas of interest.
###


Previous Patent Application:
Optical reflection element
Next Patent Application:
Vibrating mirror element and method for manufacturing vibrating mirror element
Industry Class:
Optical: systems and elements
Thank you for viewing the Vibrating mirror element patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.75463 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

All patent applications have been filed with the United States Patent Office (USPTO) and are published as made available for research, educational and public information purposes. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not affiliated with the authors/assignees, and is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application. FreshPatents.com Terms/Support
-g2--0.7382
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120320441 A1
Publish Date
12/20/2012
Document #
13520411
File Date
12/24/2010
USPTO Class
3592241
Other USPTO Classes
International Class
02B26/10
Drawings
10



Follow us on Twitter
twitter icon@FreshPatents