FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2013: 2 views
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Prospect assessment and play chance mapping tools

last patentdownload pdfdownload imgimage previewnext patent


20120317478 patent thumbnailZoom

Prospect assessment and play chance mapping tools


Prospect assessment and play chance mapping tools are provided. For assessing potential resources, example systems provide dynamically linked chance maps, transformed in real time from geological properties. Input geological maps or other data are dynamically linked to resulting chance maps, so that changes in the input maps automatically update the chance map in real time. Users can generate a custom risk matrix dynamically linking geological maps with chance maps via interface tools, dropping maps directly into the matrix. A transform may programmatically convert the geologic domain to the chance domain. The user can navigate input maps, select areas of interest, and drag-and-drop geologic properties into an uncertainty engine and distribution builder for uncertainty assessment based on geologic reality. A merge tool can programmatically unify multiple geological interpretations of a prospect. The merge tool outputs a single chance of success value for multiple geologic property values at each grid node.
Related Terms: Builder

Inventors: Thomas Hantschel, Alexander Martin Wilson, Nicola Tessen, Glenn Koller, Martin Neumaier
USPTO Applicaton #: #20120317478 - Class: 715255 (USPTO) - 12/13/12 - Class 715 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120317478, Prospect assessment and play chance mapping tools.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 61/495,584 filed Jun. 10, 2011 entitled “Prospect Assessment and Play Chance Mapping Tools,” the entirety of which is incorporated by reference herein.

BACKGROUND

A prospect includes an area of exploration in which hydrocarbons have been predicted to exist in economic quantity. A prospect may include an anomaly, such as a geologic structure or a seismic amplitude anomaly that is recommended by explorationists for drilling a well. Justification for drilling a prospect is made by assembling evidence for an active petroleum system, or reasonable probability of encountering reservoir-quality rock, a trap of sufficient size, adequate sealing rock, and appropriate conditions for the generation and migration of hydrocarbons to fill the trap. A single drilling location is also called a prospect, but the term is generally used in the context of exploration: exploration prospect assessment (EPA), hereinafter referred to as Prospect Assessment (PA).

A group of prospects of a similar nature constitutes a play. Thus, a play is a region in which hydrocarbon accumulations or prospects of a given type may occur: a conceptual model for a style of hydrocarbon accumulation used by explorationists to develop prospects in a basin, region, or trend and used by development personnel to continue exploiting a given trend. A play (or a group of interrelated plays) may occur in a single petroleum system.

Common Risk Segment Mapping (CRSM) is an exploration method to define areas of low exploration risk. Certain companies employ some method of play fairway mapping and common risk mapping. These may be used to define play Chance of Success (play COS) at the play level and local prospect Chance of Success (prospect COS) at the prospect level. “Traffic light” maps of red, yellow and green for high, moderate and low risk areas are examples of displays in the industry. CRSM maps that combine the geological elements that determine the Chance of Success of plays and prospects may be further combined with maps that delineate other risk elements that affect the overall prospectivity in an area, for example, distance from shore, water depth, accessibility to acreage, and so forth.

Play-based exploration may have a different focus than prospect-based exploration. Beyond the traffic light maps, there may be maps that show shared/play-specific and local/prospect-specific probabilities. A problem with these conventional probability and Chance of Success maps, however, may be the relative complexity of arriving at the map itself, such that if a geological condition changes, or when the explorationist changes a hypothetical or a geological property underpinning the map, the map has to be reconfigured and recalculated, which may be a conventionally painstaking process.

Play fairway mapping, common risk mapping, and Chance of Success mapping conventionally depend on numerous complex processes. The shear amount of input data through which the user may need to sort can make map creation difficult and sometimes non-intuitive. Additionally, there may be a lack of information on how to accomplish the exploration workflows. Easy-to-use tools may be needed to give fast results and simplify the clutter of inputting data for the process of creating the Chance of Success maps and evaluating the results.

SUMMARY

Prospect assessment and play chance mapping tools are provided. For exploration prospect assessment of potential hydrocarbon resources in a play or a prospect, an example system provides dynamically linked, real time risk, chance of success, and chance of failure maps (“chance maps”), transformed in real time from the geological properties of one or more input geological maps, play fairway maps, or other input data. The geological maps and data input to the system are dynamically linked to the resulting output: chance maps, so that a change to a geologic parameter of an input map or input datum automatically updates the chance map(s) in real time or near real time. In an example implementation, user-instigated changes in an example user interface are also instantly reflected in the resulting chance map. The example user interface allows the user to create and specify a custom hierarchical matrix of risk maps, including specifying dynamically linked input maps and data, and the dynamic links themselves. The user can specify sub-maps and sub-matrices to construct the main risk matrix, selecting and dropping maps directly into the matrix. A customizable transform quickly converts geologic properties from the geologic domain to the chance domain. The user interface also enables the user to navigate geological maps, draw a polygon around areas of interest (AOI) or otherwise select areas on a geologic map. After selecting an area, the user may drag-and-drop geologic properties within the polygon directly into an uncertainty engine that maps risk by applying an equation or by building a distribution to map uncertainty in a manner that is automatically tied directly back to geologic reality. A merge tool can apply a customizable formula to perform a programmatic merge of multiple grids that are modeling multiple different geological interpretations of a prospect. The merge tool outputs a single chance of success value for multiple geologic property values at each grid node.

This summary section is not intended to give a full description of prospect assessment and play chance mapping tools, or to provide a comprehensive list of features and elements. A detailed description with example implementations follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system and environment for prospect assessment and play chance mapping tools.

FIG. 2 is a diagram of an example play chance matrix.

FIG. 3 is a diagram of an example transform table.

FIG. 4 is a diagram of an example property to chance of success map conversion via transform.

FIG. 5 is a diagram of an example process of selecting an area of a geological map to drag-and-drop property values into a distribution for creating a live chance of success map.

FIG. 6 is a flow diagram of an example process setting up a chance of failure map.

FIG. 7 is a diagram of an example histogram or distribution builder for creating a chance of failure map.

FIG. 8 is a diagram of an example merge process for generating a single chance of success value for a distribution of geologic values at each grid node of a grid that is modeling a play or prospect.

FIG. 9 is a flow diagram of an example process for inputting maps to generate a risk map.

FIG. 10 is a flow diagram of the example process in FIG. 9 with an uncertainty option.

FIG. 11 is a flow diagram of the example process in FIG. 10, with an auto update option.

FIG. 12 is a diagram of an example user interface for creating a chance map.

FIG. 13 is a diagram of an example user interface showing default templates.

FIG. 14 is a diagram of an example user interface showing icons or buttons for creating and linking input maps and risk maps.

FIG. 15 is a diagram of an example user interface showing creation of submaps during matrix and map creation.

FIG. 16 is a diagram of an example user interface showing matrix handling.

FIG. 17 is a diagram of an example user interface showing matrix creation.

FIG. 18 is a diagram of an example user interface showing value entering during matrix creation.

FIG. 19 is a diagram of an example user interface showing an option for loading a pre-made matrix.

FIG. 20 is a diagram of an example user interface showing how to input a play-fairway map 122.

FIG. 21 is a diagram of an example user interface showing input of a single value via typing or scaling on a visual slider.

FIG. 22 is a diagram of an example user interface showing how to link a pre-existing risk map and/or a play-fairway map 122.

FIG. 23 is a diagram of an example user interface showing how to create a link between an input map and a desired risk map.

FIG. 24 is a diagram of an example user interface showing how to specify a transform through a table format.

FIG. 25 is a diagram of an example user interface showing entry of matrix values.

FIG. 26 is a diagram of an example user interface showing entry of matrix values.

FIG. 27 is a diagram of an example user interface showing a linkage indicator to show when maps are dynamically linked.

FIG. 28 is a diagram of an example user interface showing a control for activating automatic updating between maps.

FIG. 29 is a diagram of an example user interface showing an alternate method of linking maps for real time updating.

FIG. 30 is a diagram of an example user interface showing output options.

FIG. 31 is a diagram of an example user interface showing selection of uncertainty options for a single map.

FIG. 32 is a diagram of an example user interface showing selection of uncertainty options for multiple maps.

FIG. 33 is a diagram of an example user interface showing a map stack option, in which a user can enter a stack of maps within a folder and select a weighting factor which to skew the distribution.

FIG. 34 is a diagram of an example user interface showing a test button to check if there are missing data maps or value entries and if there are current connections between the data maps and the risk maps.

FIG. 35 is a diagram of an example user interface showing an example test result of the test in FIG. 34.

FIG. 36 is a flow diagram of an example method of creating a live chance of success map.

FIG. 37 is a flow diagram of an example method of capturing geological properties to generate a live chance of success map.

FIG. 38 is a flow diagram of an example method of merging multiple geological grids into a single grid of chance of success values.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Prospect assessment and play chance mapping tools patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Prospect assessment and play chance mapping tools or other areas of interest.
###


Previous Patent Application:
Display processor, method of display processing, and nontransitory storage medium storing program
Next Patent Application:
Method and system for shared document editing on a mobile device
Industry Class:
Data processing: presentation processing of document
Thank you for viewing the Prospect assessment and play chance mapping tools patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.72116 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.249
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120317478 A1
Publish Date
12/13/2012
Document #
13271755
File Date
10/12/2011
USPTO Class
715255
Other USPTO Classes
International Class
06F17/00
Drawings
39


Builder


Follow us on Twitter
twitter icon@FreshPatents