FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Inductively controlled series resonant ac power transfer

last patentdownload pdfdownload imgimage previewnext patent


20120313444 patent thumbnailZoom

Inductively controlled series resonant ac power transfer


An inductive power transfer pickup circuit has a pickup coil (L2) and tuning capacitor (C2) connected in series to provide a series resonant circuit. A bi-directional switch (S1) is used to vary the phase angle between the open circuit pickup coil voltage (Voc) and the pickup coil inductor current (iL) to provide a controlled AC supply to an output of the pickup.

Inventors: John Talbot Boys, Grant Anthony Covic, Hunter Hanzhuo Wu
USPTO Applicaton #: #20120313444 - Class: 307104 (USPTO) - 12/13/12 - Class 307 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120313444, Inductively controlled series resonant ac power transfer.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

This invention relates to Inductive Power Transfer (IPT) and has particular, but not sole, application to the provision of an AC power source. The invention may also be used to provide a DC power source.

BACKGROUND

IPT systems are now widely used in industry and elsewhere to couple power from one reference frame to another without physical contact. An example of such a system is described in U.S. Pat. No. 5,293,308, the contents of which are incorporated herein by reference.

IPT technology allows large amounts of electrical energy to be transferred between two loosely coupled inductors over relatively large air gaps. An IPT system can be divided into two sections—a primary supply and one or multiple secondary pickups. The, or each, pickup receives power inductively from the primary. For an IPT system used in material handling applications, multiple secondary pickups are coupled on one long track as shown in FIG. 1, and the coupling coefficient between the primary and secondary inductors is typically around 0.01-0.1. In order to transfer large amounts of power (>1 kW) to each secondary, the primary supply generates a current in the range of 10-80 A and a frequency in the order of 10-40 kHz to overcome the low coupling conditions. Currently, IPT applications have been used in a wide variety of industrial and commercial applications.

In order to improve power transfer capacity in the IPT system, some compensation or tuning capacitor is required in the secondary pickup. The two most common compensation topologies used in the pickup are parallel and series tuned systems as shown in FIG. 1. Parallel tuning gives a constant current source property and series tuning gives a constant voltage source property. For the series tuned pickup, the voltage source property is ideal for driving most common types of loads. However, it is difficult to exactly match the induced voltage of the pickup to the desired output voltage as the tolerance in the inductor windings can easily create a 10% deviation in the output voltage. This 10% error may not be acceptable for many commercial or industrial loads. As such, a switch mode controller is usually required after the pickup to regulate the output voltage to its desired value with a minimal amount of error.

One technique is to use primary side control to achieve voltage regulation on the secondary pickup. This method sends feedback signals such as output voltage of the secondary pickup back to the primary converter via a wireless communication channel. Generally, primary side control has two possible methods of realization-frequency control or primary current control.

For applications such as material handling systems with multiple secondary pickups, control on the primary side cannot be used since regulating voltage on one pickup will affect the operation of other pickups which may be operating at different power levels. One conventional method to regulate the output voltage on the secondary side is to use a linear voltage regulator after the pickup. However, due to the tolerance of the output voltage of the pickup and the poor efficiency of the linear regulator, this topology is limited to low power applications. Another method cascades a buck converter after the series tuned pickup to regulate the output voltage with more electrical efficiency. However, this is not ideal because of the large number of components required which increase cost. In addition, the two stage (AC-DC and DC-DC) conversion process has losses in each stage which reduce efficiency. Other secondary side control techniques directly regulate power on the AC side to deliberately tune or detune the resonant tank circuit by adding extra reactance. One technique to realize a variable reactance component is to use a magnetic amplifier to produce a variable inductor. Although this may vary the AC power directly, the use of a variable inductor in the non-linear region of the B-H curve can limit the efficiency of the overall system. In addition, the variable inductor is expensive to manufacture because it has to manage the high resonant current without fully saturating.

OBJECT

It is an object of the invention to provide an IPT system that provides an AC power source, or to at least provide the public with a useful choice.

SUMMARY

OF THE INVENTION

In one aspect the disclosed subject matter provides a method of providing a power supply from IPT pickup having a pickup coil and tuning capacitor connected in series to provide a series resonant circuit, the method including the step of varying the phase angle between the open circuit pickup coil voltage and the pickup coil inductor current to provide a controlled AC supply to an output of the pickup.

In one embodiment the AC supply at the output is rectified to provide a DC supply at a further output.

In one embodiment the phase between the pickup coil open circuit voltage and the pickup coil inductor current is varied by substantially preventing current flow in the resonant circuit for a selected time period.

In one embodiment the selected time period is varied to vary the phase angle.

In one embodiment the step of substantially preventing current flow includes detecting when the current in the resonant circuit is substantially zero and maintaining the current at substantially zero for the selected time period.

In one embodiment the current is substantially prevented from flowing by operating a switch. In one embodiment the switch comprises a bi-directional switch.

In one embodiment the method includes the step of comparing the output of the pickup with a reference, and increasing or decreasing the selected time period to change the output of the pickup toward the reference.

In another aspect the disclosed subject matter provides a controller for an IPT pickup having a pickup coil and a tuning capacitor connected in series, the controller including one or more switches to control the pickup coil inductor current to thereby vary a phase angle between the pickup coil open circuit voltage and the pickup coil inductor current.

In one embodiment the phase between the pickup coil open circuit-voltage and the pickup coil inductor current is varied by operating the one or more switches at a selected time to substantially prevent current flow in the resonant circuit for a selected time period.

In another aspect the disclosed subject matter provides an IPT pickup comprising a pickup coil and a tuning capacitor connected in series to provide a series resonant circuit, and a controller to vary a phase angle between the pickup coil open circuit voltage and the pickup coil inductor current to thereby provide a controlled AC supply to an output of the pickup.

In one embodiment the phase between the pickup coil open circuit voltage and the pickup coil inductor current is varied by the controller substantially preventing current flow in the resonant circuit for a selected time period.

In another aspect the disclosed subject matter provides an IPT pickup comprising a pickup coil and a tuning capacitor connected in series to provide a series resonant circuit, and switch connected in series with the resonant circuit, the switch being operable to vary a phase angle between the pickup coil open circuit voltage and the pickup coil inductor current to thereby provide a controlled AC supply to an output of the pickup.

In one embodiment the switch comprises a bi-directional switch. A controller may be provided to control operation of the switch.

In yet another aspect the disclosed subject matter provides an IPT system including an IPT pickup according to any one of the preceding statements.

The invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Inductively controlled series resonant ac power transfer patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Inductively controlled series resonant ac power transfer or other areas of interest.
###


Previous Patent Application:
Inductive power supply
Next Patent Application:
Method and apparatus for controlling wireless power of a receiver in a wireless power transmission/reception system
Industry Class:
Electrical transmission or interconnection systems
Thank you for viewing the Inductively controlled series resonant ac power transfer patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.69032 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble , -g2--0.7545
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120313444 A1
Publish Date
12/13/2012
Document #
13261259
File Date
10/12/2010
USPTO Class
307104
Other USPTO Classes
International Class
01F38/14
Drawings
9



Follow us on Twitter
twitter icon@FreshPatents