stats FreshPatents Stats
n/a views for this patent on
Updated: November 16 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Diaphragm metering pump device for medical use

last patentdownload pdfdownload imgimage previewnext patent

20120308412 patent thumbnailZoom

Diaphragm metering pump device for medical use

where: Patm=atmospheric pressure, Pvap=vapour pressure of the pumped fluid, ΔPvalve—in=pressure difference between the upstream and downstream side of the inlet valve for opening it, ΔPΔh—in=pressure difference in the upstream pipe between its distal end and the upstream side of the inlet valve as a result of the weight of the column of fluid, ΔPpd=pressure drop in the upstream pipe for the desired flow rate. Patm−(|ΔPvalve—in|+|ΔPΔh—in|+|ΔPpd|)≧P>Pvap This pump comprises a chamber and an annular pumping diaphragm secured to the said chamber and the inner edge of which is secured to a central drive part. This diaphragm has a convex domed profile so that its expulsion stroke results essentially in the energy-generating flexing of the intake stroke. The rigidity of the diaphragm is chosen so that the absolute pressure of the chamber lies within the following range:
Related Terms: Absolute Pressure

Inventor: Jean-Denis Rochat
USPTO Applicaton #: #20120308412 - Class: 417395 (USPTO) - 12/06/12 - Class 417 
Pumps > Motor Driven >Fluid Motor >Common Pumping And Motor Working Member >Collapsible Common Member >Diaphragm

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120308412, Diaphragm metering pump device for medical use.

last patentpdficondownload pdfimage previewnext patent

The present invention relates to a metering pump device for medical use comprising a pumping chamber, an annular pumping diaphragm the outer edge of which is secured to the said pumping chamber and the inner edge of which is secured to a central drive part that is more rigid than the said diaphragm, able to be displaced parallel to itself between an extreme return position and an extreme displacement position in its expulsion stroke and its intake stroke, respectively, these two positions lying one on each side of the plane containing the outer edge of the said annular diaphragm, the said pumping chamber comprising an inlet valve and an outlet valve which are respectively opened by a reduced pressure and by a raised pressure in the pumping chamber as a result of the movements of the said annular pumping diaphragm, the intake stroke of the said diaphragm resulting from the energy accumulated by the elastic deformation of the diaphragm during its expulsion stroke.

Pumps of this type are already known. Production of such a pump as a metering pump for medical use, particularly as a single-use perfusion pump, presents numerous problems that known diaphragm pumps are unable to overcome.

This pump needs to be accurate, and small while at the same time providing optimum flow rate, and needs to represent good value for money because it is not re-usable. The outlet valve of the pump has to provide safety against a free flow of liquid under a certain pressure, which is typically that of the column of liquid between a pouch of perfusion liquid and the pump, or the pressure resulting from accidental pressure applied to the pouch of liquid. Given this safety, the pumping diaphragm has to be able to withstand the working pressure, which is made up of a pressure to open the outlet valve that has to remain closed up to a pressure that is determined by safety standards, of a pressure drop in the downstream pipe and of a service pressure at the end of the downstream pipe.

The pumping diaphragm has to be able to take in the liquid by moving from its extreme displacement position to its extreme return position creating enough of a reduced pressure in the presence of the pressure drop in the upstream and downstream pipes of the pumping device and of the pressure threshold of the inlet valve.

This intake has to be achieved as quickly as possible in order to provide an optimum flow rate given the volume of the pumping chamber. However, in order to avoid shockwaves in the pipes, vaporization of the pumped liquid through a pressure drop greater than the vapour pressure of the liquid, and the effects of cavitation, the reduced pressure created by the return of the diaphragm must not be too great.

Admittedly, the pumping diaphragm could be connected to the actuator for a two-way drive. However, such a solution would make the single use more complicated and therefore more difficult to manufacture and would make it more difficult to fit into the drive device. This method of driving also allows great precision in the control of the position of the diaphragm, and therefore great precision in the flow rate.

Meeting all of these conditions, some of which oppose others, is therefore not straightforward.

It is an object of the present invention to provide a solution which is able, at least in part, to meet the aforementioned conditions.

To this end, the subject of the present invention is a metering pump device for medical use according to Claim 1.

The various specifics and advantages of the invention will become better apparent from reading the following description of two embodiments of the metering pump device that forms the subject of the invention which are given by way of examples and illustrated schematically in the attached drawings.

FIG. 1 is a schematic general arrangement of the metering pump device;

FIG. 2 is a diagram illustrating a typical operating pumping range using a flat pumping diaphragm;

FIG. 3 is a cross section through a pumping diaphragm according to the invention intended to be connected to a pumping chamber;

FIG. 4 is a pressure-displacement diagram for a pumping device using the diaphragm of FIG. 3;

FIG. 5 is a comparative pressure-displacement diagram of a pumping device using a flat diaphragm with the same dimensional ratios as the diaphragm of FIG. 3;

FIG. 6 is a diagram showing the pressure sensitivity of the diaphragm of FIG. 3;

FIG. 7 is a comparative pressure-sensitivity diagram for the flat diaphragm of FIG. 5;

FIG. 8 is a diagram of the diaphragm of the pumping device that forms the subject of the invention, showing the characteristic dimensions the dimensional ratios of which will be discussed further in the description.

The metering pump device that forms the subject of the invention is illustrated very schematically in FIG. 1, given that it is the elastically deformable pumping diaphragm 1, and the geometry and structure thereof, which constitute the innovative part of this invention.

Aside from the pumping diaphragm 1, this device comprises a pumping chamber 2 into which there open an upstream pipe 3 controlled by an inlet valve 4, a downstream pipe 5 itself controlled by an outlet valve 6. The pumping diaphragm 1 is intended to move between an extreme displacement position that reduces the volume of the pumping chamber 2, leading to a raised pressure able to open the outlet valve 6 and an extreme return position that induces a reduced pressure able to close the outlet valve 6 and to open the inlet valve 4.

It is a more particular object of the invention to determine how to produce a diaphragm that is able to meet a certain number of conditions.

In order to expel the liquid from the pumping chamber 2, a drive mechanism 7, here symbolically depicted by a pushrod, pushes against the pumping diaphragm 1 in the direction of the inside of the pumping chamber. During the intake phase of the pump, it is the elasticity of the diaphragm which produces the return stroke generating, on the one hand, the intake and, on the other hand, returning the drive mechanism 7 to its starting position. As a result, suitable sizing of the diaphragm 1 is of key importance in order:

To have sufficient intake (be capable of creating enough of a reduced pressure) at the time of filling to combat any reduced pressure (pressure drop in a pipe, height of water column, valve with pressure threshold, etc.) and achieve sufficiently rapid filling of the pumping chamber, and to do so over the entire operating range thereof.

However, in order to avoid shockwaves in the lines, effects of vaporization of the liquid contained in the pumping chamber 1 as a result of a pressure drop beyond the vapour pressure of this liquid, or alternatively the effects of cavitation, the intake must not create too great a pressure drop.

Not to be too sensitive to the pressure in the upstream and downstream pipes, so as to maintain the precision of the incremental volumes pumped and therefore the precision of the flow rate, irrespective of the pressures upstream and downstream of the pumping device.

We are now going to look at the sizing of the pumping diaphragm in order to obtain adequate filling.

In what follows of the description, the behaviour of an annular diaphragm of flat profile surrounding a central core the thickness of which is chosen such that it deforms as little as possible, ideally not at all bearing in mind the stresses to which it is exposed, will be compared.

The feature of foremost interest to us is the pressure reduction that the diaphragm is capable of supplying as a function of the displacement of its central core.

Dimensioning the pumping diaphragm 1 first of all goes through the step of defining an operating range. In order to allow the diaphragm to pump right from the beginning of its stroke giving rise to a raised pressure, it is necessary for the diaphragm to be subjected to a preload, as will be seen later on.

In the example adopted here, the preload of the diaphragm corresponds to a displacement by 0.4 mm from its rest position, the operating range extending from 0.4 mm to 1.2 mm. This operating zone is delimited by two vertical dotted lines in the diagram of FIG. 2. The pressure in the pumping chamber must not drop below the vaporization pressure of water, represented by the lower line. Finally, the operating range needs to lie at a pressure below −2×104 Pa, in order to counter the pressure of the liquid on the upstream side of the inlet valve 4 (1×104 Pa), the height of the water column to be taken in (5×103 Pa) and a minimum of 5×103 Pa in order to return the drive member 7 to its starting position. The working zone of the pumping diaphragm 1 is therefore defined by the rectangle bounded by the two vertical dotted lines and the two horizontal lines. Nonetheless, in order to take tolerances into consideration, a margin of 0.1 mm on the displacement of the pumping diaphragm is provided, as illustrated by the two continuous vertical lines. The possible operating zone then ranges between 0.3 and 1.3 mm, as illustrated in FIG. 2.

It is evident from that figure that the annular pumping diaphragm 1 has to have a rigidity such that the absolute pressure in the pumping chamber in the range of operation of the diaphragm situated between the extreme displacement position and the extreme return position lies within the following range:


where: Patm=atmospheric pressure Pvap=vapour pressure of the pumped fluid ΔPvalve—in=pressure difference between the upstream and downstream side of the inlet valve for opening it ΔPΔh—in=pressure difference in the upstream pipe between its distal end and the upstream side of the inlet valve as a result of the weight of the column of fluid ΔPpd=pressure drop in the upstream pipe for the desired flow rate.

FIG. 2 again depicts the pressure-displacement curve for the aforementioned flat diaphragm. It may be noted that a situation is reached where the reduced pressure generated by the moving diaphragm x>0.7 mm is far too great, which could give rise to shockwaves (pressure waves in the upstream pipe 3), to boiling phenomena resulting from a drop in pressure and/or to cavitation. In other words, the gradient which is about −1×104 Pa/0.1 mm is too steep. Conversely, if attempts are made to reduce the gradient as far as possible, there is a risk of being at a pressure equal to −2×104 Pa at the prestress position of the diaphragm corresponding to a displacement of 0.3 mm and of not being able to complete the intake, or, put another way, of having an intake smaller than the pumping volume of the pump.

In order to address this problem, the challenge is to create a diaphragm which can work at the most constant pressure possible over the operating range. That would make it possible, firstly, to operate in the permissible operating zone (an essential condition) and secondly to soften the shockwaves in the upstream pipe 3 and avoid vaporization of the liquid or cavitation.

In order to achieve a diaphragm something like this a diaphragm geometry that had a frustoconical profile in the state of rest was studied, this therefore resulting in the rigid central core of the flat diaphragm moving in a parallel plane, the annular part of the diaphragm then being conical in the state of rest. The forces resulting from the displacement of the rigid central core parallel to its plane in such a frustoconical diaphragm can be broken down into tension-compression forces and to forces of bending of the flexible annular part.

A distinction is made between three types of behaviour as the central core gradually moves parallel to its plane:

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Diaphragm metering pump device for medical use patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Diaphragm metering pump device for medical use or other areas of interest.

Previous Patent Application:
Water-powered pump for use in irrigation and for other purposes
Next Patent Application:
Toothed wheel and pump aggregate with such a toothed wheel
Industry Class:
Thank you for viewing the Diaphragm metering pump device for medical use patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.57956 seconds

Other interesting categories:
Software:  Finance AI Databases Development Document Navigation Error


Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. Terms/Support

stats Patent Info
Application #
US 20120308412 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Absolute Pressure

Follow us on Twitter
twitter icon@FreshPatents