Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Turbulated immersion heat-exchange apparatus




Title: Turbulated immersion heat-exchange apparatus.
Abstract: A submersible heat-exchanging apparatus for installation into storage tanks used for containing industrial oils. The apparatus comprises a cylindrical heat-exchange component with one end sealingly engaging a terminal plug and the other end sealingly engaging and communicating with a coupling manifold having opposed inflow and outflow ports. A flow-directing elongate insert is provided with one end configured to engage the coupling manifold interposed the inflow and outflow ports, and the other end provided with an aperture and configured for abutting the terminal plug. The flow-directing elongate insert slidingly contacts and cooperates with the inner walls of the heat-conductive conduit thereby partitioning the heat-conductive conduit into two opposed fluid transmission channels wherein one channel communicates with the inlet port and the other channel communicates with the outlet port. The coupling manifold sealingly engages an aperture provided in the storage tank whereby the heat-exchange component extends into the tank. ...


USPTO Applicaton #: #20120305216
Inventors: Roger Arnot


The Patent Description & Claims data below is from USPTO Patent Application 20120305216, Turbulated immersion heat-exchange apparatus.

FIELD OF THE INVENTION

- Top of Page


This invention relates to heat exchangers. More particularly, this invention relates to submersible heat exchangers configured for heating and/or cooling fluids contained in tanks.

BACKGROUND

- Top of Page


OF THE INVENTION

Heavy-duty transportation and construction equipment are typically powered by diesel-fuelled engines. Such equipment are commonly adapted with operator-controlled task-performing attachments that are precisely manipulated by hydraulic cylinders in cooperation with hydraulic oil pumps. The viscosities of diesel and hydraulic oils increase significantly as ambient temperatures decrease e.g., during extended cold periods and during winter months in temperate and in far northern and southern geographies. As ambient temperatures progressively drop below freezing (i.e., 0° C.), diesel and hydraulic oils continue to thicken to the point of forming gels and/or waxes. Cold weather conditions impede the transmission of thickened diesel fuel oils from their storage tanks to engines thereby interfering with and/or preventing engine starting. Smooth and safe operation of hydraulic-controlled attachments is adversely affected by cold-thickened hydraulic oil through reduced and impaired flow rates in response to manipulation of the hydraulic controls. Additionally, cold-thickened hydraulic oil imposes significant mechanical stresses on hydraulic pumps often resulting in accelerated wearing and deterioration of the pumps' components and periodically, in pump failure.

Large volumes of crude and refined petroleum products are commonly stored in large bulk reservoir tanks at locations such as drilling sites, refineries and storage depots. Transfer and transmission of such stored petroleum products are significantly debilitated as their viscosities increase as a consequence of cold weather conditions.

Numerous heat-exchange devices and apparatus as exemplified by U.S. Pat. Nos. 6,380,523; 5,423,373; 5,029,634; 4,926,830; 4,865,005; 4,726,346 and 4,237,850, have been developed for installation in portable and/or fixed storage tanks for raising or lowering the temperatures of oil products stored therein. However, numerous problems are associated with such prior art including complexity of design and associated high costs of production, variable and uneven heat-transfer profiles, and high energy input requirements for satisfactory performance.

SUMMARY

- Top of Page


OF THE INVENTION

The exemplary embodiments of the present invention are directed to a dead-head-type turbulated submersible heat-exchange apparatus. The apparatus comprises a cylindrical heat-exchanging component having two open ends, a coupling manifold configured to sealingly engage with one open end of the heat-exchanging component and to cooperate and communicate therewith the heat-exchanging component, a plug device configured for sealingly engaging the other open end of the heat-exchanging component, and a flow-directing elongate insert configured to slidingly engage and communicate with the coupling manifold and the heat-exchanging component, and to abut the plug device.

According to one embodiment of the present invention, there is provided a coupling manifold having a collar portion that defines a first bore extending partially into the body of the coupling manifold. The body of the manifold is provided with a second bore therethrough intersecting the first bore in a transverse plane. The second bore defines an inlet port and an outlet port that communicate with the bore extending from the collar portion. It is preferred that the end wall of the first bore extending partially through the collar portion into the body of the manifold is provided with a slot interposed the inlet port and the outlet port.

According to one aspect, the collar portion is provided with an inward-facing female-threaded portion and an outward-facing male-threaded portion. In a suitable form, the outward-facing male-threaded portion is configured to threadably and sealably engage a threaded aperture provided therefore in a fluid storage receptacle. Exemplary fluid storage receptacles include tanks for storing therein crude and refined petroleum products such as oil, diesel fuel and the like.

According to another aspect, the inlet and outlet ports are provided with inward-facing female threads configured for sealably engaging hose barbs. Alternatively, the inlet and outlet ports are configured to interconnect with and sealably engage fluid transmission lines.

According to yet another aspect, the body of the coupling manifold opposite the collar portion is provided with two opposing notches thereby defining an outwardly extending section having two parallel and opposed flat edges that are engagable by the jaws of wrenching tools.

According to another embodiment of the invention, there is provided a cylindrical heat-exchanging component comprising a heat-conducting conduit. In a suitable form, the conduit is provided with a plurality of uniformly spaced-apart heat-conductive fins radiating outward from the conduit. It is suitable for the fins to be integrally engaged with the outer surface of the conduit. It is also suitable that the plurality of fins extend to about one end of the conduit, i.e., the end that is sealably engagable with the plug device.

According to one aspect, the plug device is threadably sealably engaged with the conduit. by a compressive means. Alternatively, the plug device may be sealably engaged with the conduit by a compressive means, or optionally, by a process exemplified by brazing, welding .and affixing with a polymeric adhesive It is preferred that a ferrule is interposed the plug device and the conduit prior to their assembly and sealing engagement.

According to another aspect of the invention, the end of the conduit opposite the plugged end is provided with an integral male-threaded collar configured for sealably engaging the female-threaded collar portion of the coupling manifold. In a suitable form, the conduit is provided with an integrally engaged lock nut wherefrom the male-threaded collar extends.

According to a further embodiment of the present invention, there is provided a helical turbulator insert for sliding communication with the heat-conducting conduit. The turbulator insert is configured with a tang at a first end and an aperture approximate the second opposite end. It is preferred that both ends are elongate. The tang end is configured to slidingly engage the slot provided in the end wall of the bore extending into the manifold body from the collar portion thereby fixing the turbulator insert in place and providing two separate fluid transmission channels within the heat-conducting conduit. An alternative, a flat rectilinear flow separator may be provided with a tang at a first end for engaging the slot in the manifold body and at least one aperture about the second end.

According to one aspect, the aperture provided at the second end comprises a U-shaped opening. However, the aperture may comprise at least one circular void approximate the second end and preferably, a plurality of closely spaced-together circular voids approximate the second end.

In an exemplary form, the dead-head turbulated submersible heat-exchange apparatus is demountably engaged with an oil storage tank by threadably coupling the outward-facing male-threaded portion of the manifold collar with a threaded receptacle provided therethrough the storage tank. The inlet and outlet ports are sealably interconnected with fluid transmission lines controllably communicating with a pressurized supply of temperature-manipulated and temperature-controlled heat-exchange fluid. Pressurized temperature-controlled heat-exchange fluid ingressing the apparatus through the coupling manifold inlet port, is redirected by the turbulator insert into and along the void formed by the inlet-facing side of the turbulator insert and the heat-exchanging conduit until the fluid reaches the plugged end of the heat-exchanging conduit where it is redirected through the aperture provided at the end of the turbulator insert. The pressurized fluid then flows back to the coupling manifold via the void between the outlet-facing side of the turbulator insert and the heat-exchanging conduit, and then egresses from the apparatus via the outlet port in the coupling manifold. The turbulated insert causes the pressurized heat-exchange fluid to flow in a spiral pattern toward and from the plugged end of the heat-exchanging component. The spiral flow pattern facilitates and enhances the ease-of-flow of the pressurized fluid through the aperture provided at the end of the turbulator insert and the re-direction of the flow pattern toward the coupling manifold end. The consequence is that a uniform temperature profile is provided radiating outward from the heat-exchanging apparatus into the stored oil products contained within the tank.

It is to be noted that the heat-exchanging component of the apparatus of the present invention is configured to extend into storage tanks for direct contact with fluid products stored therein while the coupling manifold of the apparatus protrudes from the external surface of the tanks and is easily accessible for installation and removal, for attachment to and disconnection from a pressurized supply of temperature-controlled heat-exchange fluid, and for inspections and service work as required. It is also to be noted that the present invention is useful for: (a) rapidly increasing the temperature and reducing the viscosities of cold-affected stored oils, and (b) rapidly decreasing the temperature and increasing the viscosities of heat-affected stored fluids. It is within the scope of the present invention to install pressure and temperature measuring and/or recording and/or reporting devices that communicate with the inlet port and/or the outlet port of the coupling manifold.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


The present invention will be described in conjunction with reference to the following drawings, in which:

FIG. 1 is a side view of an exemplary embodiment of an assembled turbulated immersion heat exchange apparatus of the present invention installed into a fluids storage tank;

FIG. 2 is a cross-sectional side view of the embodiment shown in FIG. 1;

FIG. 3 is a partially exploded cross-sectional side view of the embodiment shown in FIG. 2;

FIG. 4 is a cross-sectional end view of the exemplary embodiment shown in FIG. 1;

FIG. 5 is a partially exploded cross-sectional side view showing a turbulated immersion heat exchange apparatus according to the present invention provided with an alternative rectilinear flow separator;

FIG. 6(a) is a cross-sectional end view of the exemplary embodiment shown in FIGS. 5, and 6(b) is a cross-sectional end view showing an optional modification of the longitudinal edges of the rectilinear flow separator shown in FIG. 6(a);

FIG. 7 is a close-up partially exploded cross-sectional side view showing an alternative configuration for sealably engaging the heat-exchanging component with the coupling manifold; and

FIG. 8(a) is an end view showing an alternative embodiment of the coupling manifold of the present invention, and 8(b) is a cross-sectional side view of the embodiment shown in FIG. 8(a).

DETAILED DESCRIPTION

- Top of Page


OF THE INVENTION

An exemplary embodiment of the turbulated submersible heat-exchange apparatus of the present invention is shown in the accompanying FIGS. 1-4, and is generally referred to by the numeral 10. The apparatus 10 comprises an elongate cylindrical heat-exchanging component 40 interconnected at one end with a coupling manifold 20 while the other end of component 40 is sealably engaged with a plug 50. A spiralled turbulator insert 30 extends through the heat-exchanging component 40 and abuts the manifold 20 and plug 50.

The coupling manifold 20 is provided with a collar 28 having an outward-facing male-threaded coupling portion 21 configured for threadably and sealably engaging a tank housing 5 storing a fluid 6 and an inner-facing female-threaded coupling portion 26 for sealably interconnecting with the heat-exchanging component 40. A bore 25 extends through the collar 28 into the body of the coupling manifold 20 and communicates with a threaded inlet/outlet port 23 and a threaded inlet/outlet port 24. The inlet/outlet ports 23 and 24 are preferably configured to sealably engage conventional hose barbs and/or fluid transmission lines commonly known to those skilled in these arts. It is to be noted that, if so desired, ports 23 and 24 may be configured identically so that either port may serve as an inlet port and the opposing port may serve as the outlet port. A transverse slot 27 is provided at the end of the bore 25. The portion of the manifold 20 opposite the collar 28 is notched to provide two opposing flat surfaces 22 configured to cooperate with the jaws of a wrenching tool (not shown).




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Turbulated immersion heat-exchange apparatus patent application.

###

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Turbulated immersion heat-exchange apparatus or other areas of interest.
###


Previous Patent Application:
Kearns' cooling blanket
Next Patent Application:
Heat sink
Industry Class:
Heat exchange
Thank you for viewing the Turbulated immersion heat-exchange apparatus patent info.
- - -

Results in 0.09488 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1192

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20120305216 A1
Publish Date
12/06/2012
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents



Heat Exchange   Structural Installation   Related To Wall, Floor Or Ceiling Structure Of A Chamber   Hollow Or Recess In The Structure Connected For Exchange Fluid Flow  

Browse patents:
Next
Prev
20121206|20120305216|turbulated immersion heat-exchange apparatus|A submersible heat-exchanging apparatus for installation into storage tanks used for containing industrial oils. The apparatus comprises a cylindrical heat-exchange component with one end sealingly engaging a terminal plug and the other end sealingly engaging and communicating with a coupling manifold having opposed inflow and outflow ports. A flow-directing elongate |
';