FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Enhanced axial air mover system with matrix

last patentdownload pdfdownload imgimage previewnext patent


20120301335 patent thumbnailZoom

Enhanced axial air mover system with matrix


Implementations of an enhanced axial air mover system address various issues such as drying performance, transportability, storage, use, and assembly. Some implementations include ergonomic positioning of a carrying handle relative to positioning of a fan-assembly to make the system easier to carry. Enclosures with variable diameter profiles increase air flow performance. A floor edge allows for flush positioning of the air mover's outlet to improve flow of air. Various supports and engagement members allow for horizontal and/or vertical engagement of a plurality of the air movers for storage or increased air moving capacity for a given application. An alignment guide assists with positioning of the air mover with respect to a room wall to enhance air flow within the room. A cord retaining system provides an enhanced approach for securing the air mover's electrical cord. Grill guards have slotted ends to assist with assembly of the air mover.

Inventor: Grant L. Reuter
USPTO Applicaton #: #20120301335 - Class: 41742314 (USPTO) - 11/29/12 - Class 417 
Pumps > Motor Driven >Electric Or Magnetic Motor >Rotary Motor And Rotary Nonexpansible Chamber Pump >With Specific Housing Details

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120301335, Enhanced axial air mover system with matrix.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to axial air movers.

2. Description of the Related Art

Air movers are used for such applications as to dry buildings and other structures when accidents have occurred causing areas in the buildings and other structures to become wet. Unfortunately, conventional air movers can be noisy, can waste energy, and can raise difficulties in transport, use, storage, and assembly of the units.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

FIG. 1 is a cross-sectional elevational side view of a first fan-assembly version of an enhanced axial air mover system.

FIG. 2 is a cross-sectional elevational side view of a second fan-assembly version of the enhanced axial air mover system.

FIG. 3 is a cross-sectional elevational side view of a third fan-assembly version of the enhanced axial air mover system.

FIG. 4 is a cross-sectional elevational side view of a fourth fan-assembly version of the enhanced axial air mover system.

FIG. 5 is a cross-sectional elevational side view of the enhanced axial air mover system having radiused edges.

FIG. 6 is a cross-sectional elevational side view of the enhanced axial air mover system having tapered edges.

FIG. 7 is an elevational inlet view of an augmented implementation of the first fan-assembly version of the enhanced axial air mover system.

FIG. 8 is an elevational outlet view of the augmented implementation of the enhanced axial air mover system of FIG. 7.

FIG. 9 is an elevational outlet view of a matrix configuration of a plurality of the augmented implementations of FIG. 7.

FIG. 10 is a top plan view of an engaged pair of the augmented implementations of FIG. 7.

FIG. 11 is a top-outlet perspective port side view of the augmented implementation of FIG. 7.

FIG. 12 is an elevational port side view of the augmented implementation of FIG. 7.

FIG. 13 is a bottom-outlet perspective starboard side view of the augmented implementation of FIG. 7.

FIG. 14 is an elevational starboard side view of the augmented implementation of FIG. 7.

FIG. 15 is an elevational starboard side view of a vertically stacked pair of the augmented implementations of FIG. 7.

FIG. 16 is a drying performance chart.

FIG. 17 is an elevational front view of person carrying the augmented implementation of FIG. 7.

FIG. 18 is a top-inlet perspective port side view of the augmented implementation of FIG. 7.

FIG. 19 is a top plan view of the augmented implementation of FIG. 7.

FIG. 20 is a bottom plan view of the augmented implementation of FIG. 7.

FIG. 21 is a top view of a room being dried by four of the augmented implementations of FIG. 7 showing airflow.

FIG. 22 is a top view of the room being dried by the four augmented implementations of FIG. 7 showing drying area.

FIG. 23 is a top plan view of the augmented implementation of FIG. 7 showing alignment with a wall of the room of FIG. 21.

FIG. 24 is a top-outlet perspective starboard side view of the augmented implementation of FIG. 7 with a cord restraint system.

FIG. 25 is an enlarged fragmentary view of FIG. 24 showing engagement detail of the court restraint system.

FIG. 26 is an enlarged fragmentary view of FIG. 24 showing disengagement detail of the cord restraint system.

FIG. 27 is a top-outlet perspective port side view of the augmented implementation of FIG. 7 with an attached grill guard.

FIG. 28 is a top-inlet perspective port side view of the augmented implementation of FIG. 7 with an attached grill guard.

FIG. 29 is an enlarged exploded fragmentary view of one either of the grill guards of FIG. 27 and FIG. 28 showing engagement detail with the augmented implementation of FIG. 7.

FIG. 30 is an enlarged fragmentary view of the grill guards of FIG. 29 with the grill being attached in a first position.

FIG. 31 is an enlarged fragmentary view of the grill guards of FIG. 29 with the grill being attached in a second position.

DETAILED DESCRIPTION

OF THE INVENTION

As discussed herein, implementations of an enhanced axial air mover system address various issues such as drying performance, transportability, storage, use, and assembly. Some implementations include ergonomic positioning of a carrying handle relative to positioning of a fan-assembly to make the system easier to carry. Implementations have enclosures with variable diameter profiles to increase air flow performance through the air mover. A floor edge allows for flush positioning of the air mover\'s outlet to improve flow of air after exhausted from the air mover. Various supports and engagement members allow for horizontal and/or vertical engagement of a plurality of the air movers for storage or increased air moving capacity for a given application. An alignment guide assists with positioning of the air mover with respect to a room wall to enhance air flow within the room. A cord retaining system provides an enhanced approach for securing the air mover\'s electrical cord. The air mover\'s grill guards have slotted ends to assist with assembly of the air mover.

A first fan assembly version 100 of the enhanced axial air mover system is shown in FIG. 1 as having an inlet 102 to receive intake air 104 flowing toward the system in the direction of the Z-axis and an outlet 106 to release exhaust air 108 flowing from the system in the direction of the Z-axis. The first version 100 has a housing assembly 110 including an enclosure 112 and a handle 114 extending therefrom. The handle 114 includes a grip 116 and a bracket 118. The enclosure 112 has an interior 120 with an inner surface 122 depicted in FIG. 1 with a straight profile. The enclosure 112 has edges 123 on both the inlet 102 and the outlet 106 depicted in FIG. 1 as blunt. The first version 100 further includes a fan assembly 124 having a propeller 126 with blades 128 extending from a hub 130. The fan assembly also includes a motor 132 with a shaft 133 extending therefrom with the hub 130 attached thereto. The motor 132 has a power cord 134 protruding through a passageway 135 in the enclosure 112. The motor 132 is held in place relative to the enclosure 112 with support vanes 136 extending from the enclosure. The support vanes 136 are shaped to help guide the exhaust air 108 leaving the system.

As shown in FIG. 1, the motor 132 is located along the Z-axis substantially near the outlet 106. The propeller 126 is positioned in the interior 120 farther from the outlet 106 than the motor 132 is from the outlet. Since the motor 132 weighs significantly more than the propeller 126, the combined center of gravity (CG) of the motor and the propeller as the fan assembly 124 is located approximately near the center of the motor along the Z-axis as shown in FIG. 1. The grip 116 of the handle 114 is positioned along the Z-axis to be substantially aligned along a second dimension substantially perpendicular to the Z-axis with the center of gravity (CG) of the fan assembly 124 to allow for greater ease in transport of the system. In many implementations, the Z-axis is substantially horizontally oriented and the second dimension substantially perpendicular to the Z-axis is substantially vertically oriented with the system is being carried.

A second fan assembly version 140 is shown in FIG. 2 in which the propeller 126 is located substantially near the outlet 106 and the motor 132 is located farther from the outlet. The position of the grip 116 of the handle 114 along the Z-axis is changed in the second fan assembly version 140 to be aligned with the center of gravity (CG) of the fan assembly 124 of the second fan assembly version 140.

A third fan assembly version 150 is shown in FIG. 3 in which the propeller 126 is located substantially near the inlet 102 and the motor 132 is located farther from the inlet. The position of the grip 116 of the handle 114 along the Z-axis is changed in the third fan assembly version 150 to be aligned with the center of gravity (CG) of the fan assembly 124 of the third fan assembly version 150.

A fourth fan assembly version 160 is shown in FIG. 4 in which the motor 132 is located substantially near the inlet 102 and the propeller 126 is located farther from the inlet. The position of the grip 116 of the handle 114 along the Z-axis is changed in the fourth fan assembly version 160 to be aligned with the center of gravity (CG) of the fan assembly 124 of the fourth fan assembly version 160.

The enclosure 112 is shown in FIG. 5 as having a version of the edges 123 curved with a substantially constant radius such that the curve of the edge is sized approximately half the thickness, T, of the enclosure. The enclosure 112 of FIG. 5 is shown to house any one of the first fan assembly version 100, the second fan assembly version 140, the third fan assembly version 150, and the fourth fan assembly version 160. The enclosure 112 has a version of the inner surface 122 with a substantially straight profile.

The enclosure 112 is shown in FIG. 6 as having a version of the edges 123 as tapered. The tapering of the edges 123 is such that for an inlet portion 170 of the enclosure, the diameter of the inner surface 122 changes from D_in at the inlet 102 to D_mid1 at the Z_mid1 location along the Z axis in from the inlet along the Z-axis. The change of diameter between D_in and D_mid1 for the inlet portion 170 can be at least as much as twice the average thickness, T, of the enclosure 112 in some implementations. In other implementations the change in diameter for the inlet portion 170 between D_in and D_mid1 is at least as much as five to ten percent of the diameter, D_in, at the inlet.

The diameter of the enclosure 112 continues to decrease along the Z-axis for a first mid-portion 172 of the enclosure from a diameter of D_mid1 at the Z_mid1 location to D_mid2 at the Z_mid2 location approximately near a mid location along the Z-axis so that the inner surface 122 has a substantially variable profile for the inlet portion 170 and the first mid-portion 172. Farther toward the outlet 106 along the Z-axis for a second mid-portion of the enclosure 112 from the Z_mid2 location to a Z_mid3 location, the diameter of the enclosure 112 increases gradually from D_mid2 at the Z_mid2 location to D_mid3 at the Z_mid3 location. For an outlet portion 176 of the enclosure 112 the diameter of the enclosure increases more abruptly from D_mid3 at the Z_mid3 location to D_out at the outlet 106 so that the inner surface 122 has a substantially variable profile between the second mid-portion 174 and the outlet portion 176. In some implementations, the change in diameter between D_mid3 and D_out can be at least half as great as the change in diameter between D_in and D_mid1. The enclosure 112 of FIG. 6 is shown to house any one of the first fan assembly version 100, the second fan assembly version 140, the third fan assembly version 150, and the fourth fan assembly version 160.

An augmented implementation 180 of the first fan-assembly version 100 is shown in FIG. 7 as having a top 181, a bottom 182, a port 183, and a starboard 184. The bracket 118 of the handle 114 has a platform 186 to support an additional one of the augmented implementation 180 positioned above the depicted augmented implementation as further described below. Two vertical supports 188 extend upward from the top 181 to further support the additional above-positioned one of the augmented implementation 180. Each of the vertical supports 188 has a peg 190 to engage with the additional above-positioned one of the above augmented implementation 180.

Extending from the bottom 182 are two legs 192 each having a floor guard 194 to support the inlet portion 170 and the first mid-portion 172 on a floor. Extending from the port 183 are port supports 196. Extending from the starboard 184 are starboard supports 198. The starboard support 198 is further shown to have a peg 200 for engagement with the port support of another of the augmented implementations 180.

In FIG. 8, the augmented implementation 180 is shown to have an opening 202 in each of the legs 192 to receive the peg 190 of one of the vertical supports 188 of a lower-positioned one of the augmented implementations 180. The augmented implementation 180 has a support pad 204 that rests on the platform 186 of a lower-positioned augmented implementation. The augmented implementation 180 has a floor edge to allow for a more flush positioning of the inlet portion 102 with a floor of a room. As discussed herein, a more flush positioning allows for enhanced flow of the exhaust air 108.

The matrix 210 having m rows by n columns of a plurality of instances of the augmented implementation 180 is shown in FIG. 9. The port supports 196 of the first column of the augmented implementations 180 are engaged with respective ones of the starboard supports 198 of the second column of the augmented implementations and so on for other adjacent columns of the augmented implementations of the matrix 210.

The support pads 204 of the second row of the augmented implementations 180 rest upon the respective platforms 186 of the first row of the augmented implementations and so on for other adjacent rows of the matrix 210. The pegs 190 of the vertical supports 188 of the first row of the augmented implementations 180 engage with the respective openings 202 of the legs 192 of the augmented implementations of the second row of the matrix 210.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Enhanced axial air mover system with matrix patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Enhanced axial air mover system with matrix or other areas of interest.
###


Previous Patent Application:
Enhanced axial air mover system with grill
Next Patent Application:
Compressing diaphragm pump having abnormal pressure preventing features for spray use
Industry Class:
Pumps
Thank you for viewing the Enhanced axial air mover system with matrix patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.60367 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3205
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120301335 A1
Publish Date
11/29/2012
Document #
13570391
File Date
08/09/2012
USPTO Class
41742314
Other USPTO Classes
4151212
International Class
/
Drawings
30



Follow us on Twitter
twitter icon@FreshPatents