FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Elastic micro high frequency probe

last patentdownload pdfdownload imgimage previewnext patent


20120299612 patent thumbnailZoom

Elastic micro high frequency probe


An elastic micro high frequency probe includes a conductor, which includes a stationary body and a movable body. The stationary body has a conductive terminal, a contacting end, and a guider. The movable body has a conductive terminal, a spring mechanism, and a guider. The spring mechanism is connected to the stationary body and to one conductive terminal. The second guider connects to the spring mechanism in such a manner that the compression direction of the spring mechanism is confined by a guiding rail. Since the width of the spring mechanism is not limited by the first and second guiders, the width of the spring mechanism can be enlarged to maximize within limited space. Therefore, the HF probe as a whole can have shortest length while acquiring the predetermined total length of the elastic stroke, such that the transmission performance of the high frequency signals can be effectively enhanced.
Related Terms: Spring Mechanism

Inventors: Yi-Lung Lee, Chih-Chung Chen, Tsung-Yi Chen, Horng-Kuang Fan
USPTO Applicaton #: #20120299612 - Class: 32475507 (USPTO) - 11/29/12 - Class 324 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120299612, Elastic micro high frequency probe.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The present invention relates to a vertical probing mechanism, and more specifically to an elastic micro high frequency (“high frequency” hereinafter is referred to as “HF”) probe.

BACKGROUND

FIG. 1 shows a conventional vertical probing unit 1, which must include a spring mechanism 2 in order to perform elastic compression characteristics and to provide cushioning when a probe 3, which is connecting to one end of the spring mechanism 2, contacts to a pad 9 of a device under test (hereinafter referring to as “DUT”). In such a manner, a better contact performance between the probe 3 and the pad 9 can be achieved while preventing the probe 3 or the DUT from being damaged caused by an excessive contacting pressure.

FIG. 2 shows another conventional vertical probing unit 5 having a similar spring mechanism, but differing from the above-mentioned spring mechanism by including a first spring 6 and a second spring 7. An outer end of the first spring 6 is connecting to a probe 6a, and an outer end of the second spring 7 is connecting to a shaft 7a. In other words, the probe 6a and the shaft 7a of the vertical probing unit 5 are position changeable upon pressed, in order to be adapted for different usage environments. Such vertical probing unit can achieve the same performances as the above-mentioned probing unit 1.

Although the conventional probing units can fulfill the objective of the functional testing, there are still some drawbacks, especially when it comes to the transmission of HF signals, remained to be overcome. Generally speaking, a probing unit having good HF signal transmission performance enhances the precision and quality of DUT testing. However, those conventional probing units have the same or similar characteristic in that the spring mechanisms thereof are confined in a barrel having inner walls. As shown in FIG. 1, the spring mechanism 2 is located between two parallel side walls of a protective rod 4, while the first spring 6 and the second spring 7, as shown in FIG. 2, are located in the barrel 8. Thereby, the width W of the spring mechanisms is confined. This becomes disadvantageous since the performance of the probing unit is significantly affected when the size thereof becomes smaller and smaller. This is so because the protective rod 4 or the barrel 8 occupies relatively a small amount of space within a limited aperture of a jig. Moreover, the conventional elastic probe is movable only in the vertical direction. Such design is not suitable for use when requiring to laterally scrape the surface oxide layer off a planar pad of the DUT, and thus the contact resistance may become too large to undergo such type of testing procedures.

Therefore, our expectation is to enlarge the width of the spring mechanism to the maximum value under the constraining requirements of the limiting outer diameter D, i.e. the outer diameter of the protective rod or the barrel, and the restriction of the yield strength of the material, so as to achieve the best compression performance, i.e. the best working stroke, while shortening the total length of the spring mechanism. In such a manner, the inductance of the signal transmission can be lowered, so as to increase the bandwidth. Furthermore, it is desirable to control the movement of the spring through changes in structural design to meet the requirements of different DUTs. For example, if the tip of the probe can be configured to laterally scrape the surface oxide layer off the planar pad during testing, the contact resistance thereof can be more stable to achieve a better testing quality compared with the conventional elastic probe contacting the planar pad in a vertical-movement-only manner.

SUMMARY

OF THE INVENTION

Therefore, an objective of the present invention is to provide an elastic micro HF probe, which has improved working stroke and enhanced transmission performance of the HF signals without enlarging the length of the spring mechanism.

To achieve the above and other objectives, the present invention provides an elastic micro HF probe including a conductor. The conductor has a first conductive terminal and a second conductive terminal. The micro HF probe is characterized in that the conductor includes a stationary body and a movable body. The stationary body includes the first conductive terminal, a contacting end, and a first guider formed between the first conductive terminal and the contacting end. The movable body includes the second conductive terminal, a spring mechanism, and a second guider. The second conductive terminal is located at an outside of the contacting end of the stationary body. The spring mechanism has one end connecting to the stationary body and an another end connecting to the second conductive terminal. The spring mechanism has a width wider than that of the first guider. The second guider connects to the spring mechanism and matches up with the first guider to confine a compression direction of the spring mechanism.

In one embodiment, the stationary body has an upper clamping plate and a lower clamping plate, and the upper and lower clamping plates connect to each other. There is a constant distance kept between the upper and lower clamping plates. At least one of the upper and lower clanmping plates has a guiding rail defining the first guider. The stationary body has an end, at which the upper and lower clamping plates connect to each other, and the aforementioned end of the stationary body is formed with a through hole. The through hole has an inner wall defining the contacting end. The spring mechanism of the movable body is located between the upper and lower clamping plates, and the spring mechanism connects to a probing member which is penetrating through the through hole. The probing member has a distal end defining the second conductive terminal. The second guider comprises at least two guiding bosses connecting to the spring mechanism, and the guiding bosses are located at two sides of the guiding rail of the clamping plate.

In one embodiment, the spring mechanism of the movable body comprises a plurality of inter-connecting cantilevers, and the width of the spring mechanism defined as a distance between both ends of at least the cantilever adjacent to the guiding rail is wider than the width of the guiding rail of the clamping plate.

In one embodiment, the elastic micro HF probe further comprises at least one conductive plate. The conductive plate is disposed on a surface of one of the upper and lower clamping plates.

In one embodiment, the stationary body is a plate. The plate has a guiding groove defining the first guider. The spring mechanism of the movable body includes an upper spring and a lower spring located on two sides of the plate, respectively. The upper and lower springs inter-connect to a conductive shaft at their distal ends. The conductive shaft has a distal end defining the second conductive terminal.

In one embodiment, the guiding groove of the stationary body has a closed end and an open end. The guiding groove has an inner wall, which defines the contacting end, at the open end. The conductive shaft to which the distal ends of the upper and lower springs of the movable body connect penetrates through the open end of the guiding groove.

In one embodiment, the first guider is a winded shaft and a winded guiding groove.

The present invention further provides an elastic micro HF probe including a conductor. The conductor has a first conductive terminal and a second conductive terminal. The probe is characterized in that the conductor has a stationary body and a movable body. The stationary body includes a first contacting end, a second contacting end, and a first guider located between the first and second contacting ends. The movable body includes the first conductive terminal, the second conductive terminal, a spring mechanism, and a second guider. The spring mechanism has an end connecting to the first conductive terminal, which is located at an outside of the first contacting end of the stationary body, and an another end connecting to the second conductive terminal, which is located at an outside of the second contacting end of the stationary body. The second guider connects the spring mechanism and matches up with the first guider to confine a compression direction of the spring mechanism. Furthermore, the spring mechanism has a width larger than that of the first guider.

In one embodiment, the elastic micro HF probe comprises a separation element connecting to the stationary body and the movable body, and the first guider of the stationary body is divided into two parts by the separation element. The spring mechanism of the movable body is also divided into a first spring mechanism and a second spring mechanism by the separation element. The first spring mechanism is located in one part of the first guider, and the second spring mechanism is located in the other part of the first guider.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a conventional vertical probing unit;

FIG. 2 is a diagram illustrating another conventional vertical probing unit;

FIG. 3 is a perspective view of a HF probe of a first preferred embodiment of the present invention;

FIG. 4 is a partially-profiled perspective view of FIG. 3;

FIG. 5 is a lateral view illustrating a HF probe before compressed;

FIG. 6 is a lateral view illustrating a HF probe pressed against and contacting a DUT;



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Elastic micro high frequency probe patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Elastic micro high frequency probe or other areas of interest.
###


Previous Patent Application:
Probe assembly
Next Patent Application:
Jig for semiconductor test
Industry Class:
Electricity: measuring and testing
Thank you for viewing the Elastic micro high frequency probe patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.67652 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry   -g2--0.6955
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120299612 A1
Publish Date
11/29/2012
Document #
13477056
File Date
05/22/2012
USPTO Class
32475507
Other USPTO Classes
International Class
01R1/067
Drawings
15


Spring Mechanism


Follow us on Twitter
twitter icon@FreshPatents