FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction

last patentdownload pdfdownload imgimage previewnext patent


20120296422 patent thumbnailZoom

Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction


The present invention relates generally to lens design and, more particularly, to a method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction in order to optimally manage issues resulting from, or related to, halos.
Related Terms: Laser Vision Laser Vision Correction

Browse recent Amo Groningen Bv patents - Santa Ana, CA, US
USPTO Applicaton #: #20120296422 - Class: 623 611 (USPTO) - 11/22/12 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Eye Prosthesis (e.g., Lens Or Corneal Implant, Or Artificial Eye, Etc.) >Intraocular Lens

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120296422, Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction.

last patentpdficondownload pdfimage previewnext patent

The present application claims priority under 35 U.S.C. §119(e) to provisional application No. 61/418,234 filed on Nov. 30, 2010 under the same title, which is incorporated herein by reference in its entirety. Full Paris Convention priority is hereby expressly reserved.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to ophthalmic lenses and laser vision correction, and more particularly, to a method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction in order to optimally manage issues resulting from, or related with, halos.

2. Description of the Background

Ophthalmic lenses, such as intraocular lenses (IOLs), phakic IOLs, piggy-back IOLs, spectacle lenses, contact lenses, and corneal implants may be used to enhance or correct vision. For example, IOLs are routinely used to replace the crystalline lens of an eye during cataract surgery.

Ophthalmic lenses, such as IOLs may be monofocal or multifocal. A monofocal IOL provides a single focal point, whereas a multifocal IOL provides multiple focal points for correcting vision at different distances. For example, a bifocal IOL provides two different focal points, routinely one for near vision and one for distant vision.

Ophthalmic lenses, such as the aforementioned multifocal IOLs, may be refractive, diffractive, or both refractive and diffractive. Multifocal refractive IOLs may be comprised of several concentric annular optical zones with each zone providing for a near or a far focus. A diffractive multifocal IOL is generally divided into a plurality of annular zones, or echelettes, that are offset parallel to the optical axis by predetermined diffractive step heights in order to provide a specific phase relationship between the annular zones. A diffractive multifocal IOL may divide incident light into two diffractive orders to provide near and distant vision.

Although multifocal lenses are effective for vision correction, further enhancements would be advantageous. One problem associated with multifocal/bifocal IOLs, in part due to the typically bifocal configuration of the refractive/diffractive zones, is dysphotopsia, and in particular halos under low light conditions. Halos may arise when light from the unused focal image creates an out-of-focus image that is superimposed on the used focal image. For example, if light from a distant point source is imaged onto the retina by the distant focus of a bifocal IOL, the near focus of the IOL will simultaneously superimpose a defocused image on top of the image formed by the distant focus. This defocused image may manifest itself in the form of a ring of light surrounding the in-focus image, and is referred to as a halo. In addition to multifocality, add power and light distribution may also contribute to dysphotopsia.

Discomfort, visual disturbance or nuisance from dysphotopsia may be tied to personal attributes or habits. For example, a patient\'s psychological profile may play an important role; more critical patients may be more affected by halos than those less critical. In addition, habitual circumstances may influence discomfort, e.g. truck drivers are typically more affected by halos due to night driving.

Aberrations of the cornea and in particular higher order corneal aberrations have a direct impact on halos. Corneal topographic analysis using photokeratoscopic or videokeratographic methods provides objective measures of corneal topography. Current measurement devices typically employ several concentric rings or multiple discrete light sources to reflect a luminous object of known dimension from the cornea. The size of the cornea-reflected images of this object is then measured with photographic or electro-optical recording methods to compare the shape of the cornea with a theoretical spherical shape. If the cornea is spherical, for example, the reflected images of the ring-shaped objects will be equally spaced, continuous, concentric ring-shaped patterns. If the cornea has surface defects, or is not precisely spherical, the resultant ring images will be less equally spaced or will have a different shape, such as an elliptical shape.

Corneal topography can thus be used to determine the optical aberrations of the cornea. Such aberrations in conjunction with the designs, methods, and systems disclosed herein may be used to manage halos. And, based on the aforementioned, a need exists for a lens design and, more particularly, to an apparatus, system and method for designing, evaluating and optimizing ophthalmic lenses for such management.

SUMMARY

OF THE INVENTION

The present invention is and includes an apparatus, system and method to design, evaluate and optimize ophthalmic lenses, such as IOLs. In addition, the apparatus, system and methods can be used to optimize a laser vision correction nomogram.

A method of optimizing, evaluating and/or designing an ophthalmic lens involves initially measuring the preoperative corneal aberrations of a patient. Then, a simulated halo image, with a multifocal IOL incorporated, may be calculated for the corneal aberrations; the simulated image determining the halo size, shape and intensity. A reference halo which demonstrates acceptable dysphotopsia may then be compared with the simulated halo. Based on the comparison, a decision may be made whether to implant the multifocal IOL.

Another preferred embodiment, involves the following steps: measuring the preoperative corneal aberrations of a patient (or group of patients); calculating a simulated halo image for these aberrations, with the multifocal IOL; determining the halo size, shape and intensity; having a reference halo which demonstrates acceptable dysphotopsia; optimizing the IOL aberration profile so as to result in minimal halo, specifically when combined with the patient\'s (or group of patients\') corneal aberration profile; and implanting the custom multifocal IOL.

It is understood that an important aspect of certain embodiments of this invention includes the characterization of the corneal aberrations of a selected group of patients or population for expressing an average corneal aberration. Average corneal aberration terms of the population expressed, for example, as an average linear combination of polynomials can then be calculated and used in the lens design method.

In another preferred method, after a multifocal IOL is implanted, the corneal aberrations of a patient are measured. Then, a simulated halo image is calculated for these aberrations with the multifocal IOL; the simulated image revealing the halo size, shape and intensity. A reference halo which demonstrates acceptable dysphotopsia is then compared to the simulated halo. Based on the comparison a determination is made whether the halo is predominantly caused by the corneal aberrations. If it is, the corneal aberrations may be modified by laser vision correction to minimize the halos, and with that, minimize the discomfort caused by halos.

Another preferred embodiment, involves the following steps: measuring the preoperative corneal aberrations of the multifocal IOL patient; calculating a simulated halo image for these aberrations, with the multifocal IOL; determining the halo size, shape and intensity; having a reference halo which demonstrates acceptable dysphotopsia; optimizing the laser vision correction so as to result in minimal halo; applying the laser vision correction to the patient\'s cornea.

Another preferred embodiment, involves the following steps: measuring the preoperative corneal aberrations of the multifocal IOL patient; using a vision simulator, measure the patient\'s visual performance (e.g. halo size, shape and intensity; discomfort, contrast vision, visual acuity), while varying the patient\'s corneal aberration; based on the test, determining the optimal corneal aberration as to optimize the visual performance; applying a laser vision correction to generate the optimal corneal aberration onto the patient\'s cornea.

Another preferred embodiment, involves the following steps: optimizing a corneal correction (e.g. presby-lasik), the simulated halo image being one of the optimization parameters; applying the presby-laser vision correction to the patient\'s cornea. Prior to optimizing a corneal correction, one may measure the corneal aberrations of a patient suffering discomfort or reduced visual performance.

An exemplary ophthalmic lens would include an anterior surface and an opposing posterior surface wherein at least one of the surfaces of the ophthalmic lens is characterized by an equation including a first coefficient configured to shape the halo and intensity profile in order to minimize bother from the halo.

A preferred embodiment includes an ophthalmic lens wherein at least one of the surfaces is characterized by a phase profile configured to modify the wavefront aberration in order to shape the halo and intensity profile in order to minimize bother from the halo. The phase profile may modify spherical aberration, coma, trefoil, and/or the product of any combination.

Thus, the present invention provides a method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction or other areas of interest.
###


Previous Patent Application:
Manufacturing method of foldable artificial vitreous body and mould thereof
Next Patent Application:
Filling and implanting accommodative intraocular lenses
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.53367 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.1944
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120296422 A1
Publish Date
11/22/2012
Document #
13297103
File Date
11/15/2011
USPTO Class
623/611
Other USPTO Classes
35115977
International Class
/
Drawings
6


Laser Vision
Laser Vision Correction


Follow us on Twitter
twitter icon@FreshPatents