FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2013: 1 views
2012: 1 views
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Electronic parking meter with vehicle sensor

last patentdownload pdfdownload imgimage previewnext patent

20120286968 patent thumbnailZoom

Electronic parking meter with vehicle sensor


An electronic single space parking meter associated with a parking space is provided. The meter includes a support pole and an electronic meter mechanism coupled to and supported from the support pole. The electronic meter mechanism includes a processor. The meter includes a vehicle sensor communicably coupled to the processor of the electronic meter mechanism. The vehicle sensor is configured to detect a vehicle located within the parking space. The vehicle sensor is coupled to and supported by the support pole at a position above the ground and below the electronic meter mechanism.

Browse recent Duncan Solutions, Inc. patents - ,
Inventors: Gavin Jones, Balu Subramanya, Mike Nickolaus
USPTO Applicaton #: #20120286968 - Class: 34087002 (USPTO) - 11/15/12 - Class 340 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120286968, Electronic parking meter with vehicle sensor.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED PATENT APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 61/484,568 titled “PARKING METER SYSTEMS AND METHODS,” filed May 10, 2011, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of parking meter systems, devices and methods. The present invention relates specifically to a parking meter system equipped for wireless communication between the various components of the parking system.

Single space parking meters are typically associated with a single parking space. To utilize an individually metered parking space, a motorist typically inserts money into the parking meter, and the parking meter displays an amount of time related to the amount of money inserted. A multi-space meter typically provides a single payment location for more than one parking spot, and the multi-space meter receives payment and tracks meter time for the multiple parking spots. For either type of meter, the motorist may park at the metered spot for the amount of parking time purchased. When the time on the meter expires, the motorist may move their car or add more time to the meter. If the meter expires and the motorist remains parked at the meter, a parking enforcement officer may issue a parking ticket. A city or other entity may operate a city wide system of single space parking meters and/or multi-space meters.

SUMMARY

OF THE INVENTION

Generally, one embodiment of the invention relates to a parking meter including one or more vehicle sensors associated with each single space meter in the parking system. The vehicle sensor is located above the ground and set back from the curb, and may be mounted to the supported pole for the meter.

Another embodiment of the invention relates to a single space parking meter associated with a parking space. The single space parking meter includes a support pole including a lower end and an upper end, and the lower end is configured to be coupled to the ground adjacent the parking space such that there is a distance between the support pole and the parking space. The meter includes an electronic meter mechanism coupled to and supported from the upper end of the support pole, and the electronic meter mechanism includes a processor. The meter includes a vehicle sensor communicably coupled to the processor of the electronic meter mechanism, and the vehicle sensor is configured to detect a vehicle located within the parking space across the distance, to generate a signal indicative of the presence of the vehicle within the parking space and to communicate the signal to the processor. The vehicle sensor is coupled to and supported by the support pole at a position above the ground and below the electronic meter mechanism, and the vehicle sensor includes a detection zone and the vehicle sensor is positioned such that the detection zone is located within the parking space.

Another embodiment of the invention relates to a parking meter including a support pole including a lower end and an upper end, and the lower end is configured to be coupled to the ground. The parking meter includes an electronic meter mechanism coupled to and supported from the upper end of the support pole, and the electronic meter mechanism includes a processor. The electronic meter mechanism is associated with a parking spot. The parking meter includes a vehicle sensor communicably coupled to the processor, and the vehicle sensor is located above the ground and set back from the parking spot such that there is a space between the vehicle sensor and the parking spot. The vehicle sensor is configured to detect a vehicle located within the parking spot across the space and to generate a signal indicative of the presence of the vehicle within the parking spot and to communicate the signal to the processor.

Another embodiment of the invention relates to an electronic single space parking meter system configured to be mounted to a support pole and associated with a parking space. The electronic single space parking meter system includes a vehicle sensor and an electronic meter mechanism configured to be received within an outer meter housing coupled the upper end of the support pole. The electronic meter mechanism includes an inner housing including a front side and a rear side and wireless communications hardware supported by the inner housing configured to wirelessly communicate data between the electronic meter mechanism and a parking management system. The electronic meter mechanism includes a credit card mag-strip reader supported by the inner housing, a currency reader including a slot for receiving currency, an electronic display screen supported by the inner housing and a meter control system. The vehicle sensor includes a sensor housing and a sensing element configured to detect a vehicle within the parking space and to generate a signal indicative of the presence of the vehicle within the parking space. The sensing element is supported within the sensor housing. The electronic single space parking meter system includes a wired communication link configured to communicably couple the sensing element to the meter control system to communicate the signal indicative of vehicle presence from the sensing element to the meter control system.

Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

This application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements in which:

FIG. 1 shows a parking system according to an exemplary embodiment.

FIG. 2 shows a pole-mount vehicle sensor according to an exemplary embodiment.

FIG. 3 shows a surface-mount vehicle sensor according to exemplary embodiments.

FIG. 4 shows a subterranean sensor according to an exemplary embodiment.

FIG. 5 shows a parking system according to an exemplary embodiment.

FIG. 6 shows a parking system according to an exemplary embodiment.

FIG. 7 is a block diagram of a parking system according to an exemplary embodiment.

FIG. 8A is a front view of a single-space parking meter according to an exemplary embodiment.

FIG. 8B is an exploded view of a single-space parking meter according to an exemplary embodiment.

FIG. 9 is a front view of an electronic meter mechanism according to an exemplary embodiment.

FIG. 10 is a flow diagram showing the operation of a parking meter according to an exemplary embodiment.

FIG. 11 is a flow diagram showing zeroing of a parking meter according to an exemplary embodiment.

FIG. 12 is a flow diagram showing control of parking meter including a maximum time limit according to an exemplary embodiment.

FIG. 13 is a block diagram showing an electronic meter mechanism according to an exemplary embodiment.

FIG. 14 is a block diagram of a controller for a parking meter according to an exemplary embodiment.

FIG. 15 shows a controller coupled to the main electronics board of a single-space meter according to an exemplary embodiment.

FIG. 16 shows a controller incorporated in a stand-alone vehicle sensor according to an exemplary embodiment.

FIG. 17 shows a controller configured for the control of two single-space parking meters according to an exemplary embodiment.

FIG. 18 shows a detailed block diagram of a controller configured for the control of two sets of peripheral devices for two single-space parking meters according to an exemplary embodiment.

FIG. 19 shows a controller configured to provide additional functionality as a retrofit for a single-space meter according to an exemplary embodiment.

FIG. 20 shows a controller configured to function as a gateway for a parking system according to an exemplary embodiment.

FIG. 21 shows a process for upgrading a single-space parking meter with a new electronic meter mechanism according to an exemplary embodiment.

FIG. 22 is a front view of an electronic meter mechanism according to an exemplary embodiment.

FIG. 23 is a side view of an electronic meter mechanism according to an exemplary embodiment.

FIG. 24 is a rear view of an electronic meter mechanism according to an exemplary embodiment.

FIG. 25 shows a process of upgrading a single-space parking meter with a new electronic meter mechanism according to an exemplary embodiment.

FIG. 26 shows a meter housing cap following revision to accommodate an electronic meter mechanism that includes front and rear solar panels.

FIG. 27 shows a perspective view of an electronic meter mechanism with a removable memory device according to an exemplary embodiment.

FIG. 28 shows the electronic meter mechanism of FIG. 27 with the removable memory device removed according to an exemplary embodiment.

DETAILED DESCRIPTION

Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.

Referring to FIGS. 1, 5, 6 and 7, various exemplary embodiments of parking system 10 are shown. In the exemplary embodiment of FIG. 1, parking system 10 includes one or more single-space parking meters 12, one or more multi-space parking meters 14, a communication network, shown as wireless network 16, and a parking system control system, shown as parking management system 18. Both single-space meters 12 and multi-space meter 14 may be configured to communicate with parking management system 18 by directly accessing wireless network 16. In various embodiments, wireless network 16 may be a mobile telephone system, and meters 12 and 14 may access wireless network 16 utilizing standard mobile telephone systems (e.g., GSM, GPRS, EDGE, 2.5G, 3G, 4G, etc.).

As discussed in more detail below, meters 12 and 14 are configured to communicate parking meter data to parking management system 18 via wireless network 16, and the communicated parking meter data is utilized by parking management system 18 to provide the parking system functionalities discussed herein. For example, parking management system 18 is a computerized, server system that provides for processing, storage and management of data within parking system 10. In one embodiment shown in FIG. 1, parking management system 18 includes at least one server 19 and wireless communications subsystem 21. Server 19 is configured to store and process parking data associated with a particular parking spot (e.g., current parking space occupancy information, current meter time, vehicle sensor data, information regarding mode of payment, vehicle arrival information, vehicle departure information, parking rates, location information, etc.), including parking data received wirelessly from the meters, to generally provide the parking system functions discussed herein. Wireless communications hardware 21 of parking management system 18 is configured to allow server 19 to communicate wirelessly with the various components of parking system 10 discussed herein.

Further, server 19 is configured to store and generate data that may be communicated wirelessly to the various components of parking system 10, and in this embodiment, wireless communication hardware 21 is configured to transmit system data or information from server 19 to the appropriate component of the parking system. For example, wireless communications hardware 21 is configured to transmit and meters 12 and 14 are configured to receive information from parking management system 18 via wireless network 16. The system data transmitted from parking management system 18 and received by the parking meters may include parking meter configuration data, parking rate data, time and date data, testing and diagnostic data, parking meter software updates, etc. It should be understood that while the embodiments discussed herein relate primarily to a parking system that communicates with parking management system 18 via a wireless communication network 16, in other embodiments, a wired or a combination wired/wireless communication network may be used to provide communication to parking management system 18.

Parking system 10 also includes one or more vehicle sensors, shown as pole-mount vehicle sensors 20, curb surface-mount sensor 22 and street surface-mount sensor 24. Generally, sensors 20, 22 and 24 are each associated with a single parking space 26 and are configured to detect the presence of a vehicle located in the associated parking space, to detect entry of a vehicle into the associated parking space and/or to detect the exit of a vehicle from the associated parking space. In the embodiment of FIG. 1, a pole-mount sensor 20 is associated with and in communication with each single-space meter 12, and sensors 22 and 24 are associated with and in communication with multi-space meter 14. In other embodiments, a subterranean sensor 28 (see FIG. 4) may be located beneath the surface of the parking spot in place of street surface-mount sensor 24. In other embodiments, a curb surface-mount sensor 22, a street surface-mount sensor 24 or subterranean sensor 28, may be associated with a single-space meter 12 instead of pole-mount sensor 20. Generally, vehicle sensors 20, 22 and 24 are directional sensors (i.e., sensor that only senses in a particular region or direction) and include a targetable detection zone. Generally, the vehicle sensors are positioned such that the targetable detection zone is located within the parking space associated with the meter and is not located in adjacent parking spaces.

Vehicle sensors 20, 22, 24 and 28 are configured to detect one or more aspect (e.g., presence, entry, exit, etc.) of a vehicle within the parking spot associated with the sensor and to generate a signal indicative of the detected aspect of the vehicle. The generated signal is then communicated from the sensor to a controller associated with the parking meter for the parking spot. In various embodiments, communication from the sensors to the associated meter may be either through wired or wireless communication. As explained in more detail below, the parking meter may execute various functions in response to the detected aspect of the vehicle and may send data to and/or receive data from parking management system 18 in response to the detected aspect of the vehicle. In addition, data generated by the vehicle sensor associated with each meter (e.g., data related to the presence of a vehicle within the space associated with the meter) may be communicated to parking management system 18 via the wireless communications hardware of the meter.

Referring to FIGS. 1, 5 and 6, parking system 10 include a plurality of single-space meters 12 (e.g., 2, 3, 4, . . . 50, . . . 100, more than 2, more than 10, more than 20, more than 50, more than 100, etc., single-space meters), and may include one or more multi-space parking meters 14. In the embodiment shown, each single-space parking meter 12 includes a vehicle sensor, shown as vehicle sensor 20, physically coupled to and supported by the parking meter pole 75. As shown pole 75 includes a lower end coupled to the ground adjacent to and set back from parking space 26 associated with the meter 12 such that there is a distance or space located between pole 75 and space 26. With vehicle sensor 20 coupled to pole 75, a space is present between vehicle sensor 20 and parking space 26, and vehicle sensor 20 is configured to detect an aspect of a vehicle located within parking space 26 across the space. As shown in FIG. 1, vehicle sensor 20 includes a targetable detection zone 17, and vehicle sensor 20 is positioned on pole 75 such that the detection zone 17 of vehicle sensor 20 is located within parking space 26. In another embodiment, vehicle sensor 20 may be physical coupled to and supported by the parking meter housing. In these embodiments, vehicle sensor 20 is located above both the street and sidewalk surface and is also set back from the curb.

Physically supporting the vehicle sensor in close proximity to the meter mechanism and electronics of the single-space meter 12 allows for robust electrical communication between the vehicle sensor and the electronics of the single-space meter. In the embodiment shown, vehicle sensor 20 is communicably coupled with the control circuitry of single-space meter 12 (e.g., controller 200 shown in FIG. 13) directly via a dedicated hardwired connection. The robust electrical connection permitted by the proximity between the single-space meter electronics and vehicle sensor 20 allows for shared use of certain components. For example, in the embodiment shown, both the electronics of the single-space meter and vehicle sensor 20 share a common power supply (e.g., solar cells and battery). In addition, this arrangement allows both single-space meter 12 and vehicle sensor 20 to utilize a single set of wireless communications hardware. Specifically, data generated by vehicle sensor 20 is communicated first to a control system associated with the mechanism of single-space meter 12, and then is communicated to parking management system 18 via a wireless communication link. In this embodiment, the hardwired connection between vehicle sensor 20 and single-space meter 12 is a combined data communication link and power connection delivering power to vehicle sensor 20 from a power source (e.g. batter, solar panel, etc.) physically located within the outer housing of the single space meter.

Referring to FIGS. 1 and 6, in various embodiments, parking system 10 may also include curb mount vehicle sensors 22 and/or street mount vehicle sensors 24 that communicate parking space usage information wirelessly to a multi-space meter 14 or to parking management system 18. In contrast to pole-mount sensors 20, curb mount vehicle sensors 22 and/or street mount vehicle sensors 24 include their own power supply and communications hardware. In the embodiment shown in FIG. 1, curb mount vehicle sensors 22 and/or street mount vehicle sensors 24 are stand-alone sensors configured for short relatively short range wireless communication to a multi-space meter 14, and multi-space meter 14 is configured for cellular communication with parking management system 18.

Referring to FIGS. 2-4, exemplary embodiments of sensors 20, 22, 24 and 28 are shown. FIG. 2 shows pole-mount vehicle sensor 20. As shown in FIG. 2, pole-mount vehicle sensor 20 includes a housing 30 having a central cavity 32. During mounting to a single-space meter 12, the parking meter pole is received within cavity 32 to couple pole-mount vehicle sensor 20 to single-space meter 12. The sensing element (e.g., an electromagnetic energy transmitter and receiver, transceiver, etc.) is located within housing 30. In the embodiment shown in FIG. 1, housing 30 of vehicle sensor 20 surrounds pole 75, and the upper end of housing 30 is coupled to the lower end of the outer meter housing (e.g., outer meter housing 70 shown in FIG. 8). In addition, the wired communication link communicably coupling the sensing element of vehicle sensor 20 to the processor of the single space meter is located within both sensor housing 30 and the outer meter housing. Specifically the portion of the wired communication link coupled to the sensing element is located within sensor housing 30 and the portion of the communication link coupled to the processor of the electronic meter mechanism is located with the outer meter housing. Sensor housing 30 acts to protect and supports the sensing element and the wired connection to the electronic meter mechanism. In the embodiment in which a hardwired connection couples vehicle sensor 20 to the electronic meter mechanism, vehicle sensor 20 does not include dedicated wireless communications hardware within sensor housing 30. In one embodiment, the vehicle sensors disclosed herein includes a local vehicle sensor processor the first processes the signal from the sensing element and then communicates the processed signal indicative of a vehicle in the parking space to a processor that controls the wireless communications hardware.

FIG. 3 shows surface-mount sensors 22 or 24 that may be coupled to either the curb surface or the surface of the parking space using a suitable attachment mechanism, such as epoxy. FIG. 4 shows subterranean sensor 28 that may be located below the surface of parking space 26. Similar to sensors 22 and 24 discussed above, subterranean sensor 28 communicates with meters 12 and 14 via a wireless connection and may be used in place of either sensor 22 or 24 in the parking system embodiments discussed herein.

In one embodiment, sensors 20, 22, 24 and 28 may be sensors configured to utilize electromagnetic energy to detect the presence of the vehicle in the parking space, and specifically, sensors 20, 22, 24 and 28 may be a radiofrequency (RF) sensor including a radiofrequency-based sensing element. In other embodiments, sensors 20, 22, 24 and 28 may be non-electromagnetic sensors In other embodiments, sensors 20, 22, 24 and 28 may be any sensors suitable for detecting an aspect of a vehicle in the associated parking space. For example, sensors 20, 22, 24 and 28 may be infrared reflectance sensors, ultrasonic sensors, capacitance sensors, proximity sensors, magnetic sensors, magnetic-flux sensors, non-intrusive sensors, radar-based sensors, a low power/broad spectrum radar sensor, time of flight sensors, ranging sensors, etc. Further, because sensor 24 (or sensor 28) is physically in contact with parking space 26 (e.g., in contact with the parking space surface in the case of a surface-mount sensor or beneath parking space 26 in the case of a subterranean sensor 28), sensor 24 (or sensor 28) may be a weight sensor or movement sensor that is reactive to a vehicle in parking space 26.

In addition to generating signals indicative of vehicle presence, vehicle entry to the parking spot and vehicle exit from a parking spot, vehicle sensors 20, 22, 24 and 28 may be configured to generate other signals related to the parking spot or vehicles located in the parking spot that may be used by parking system 10. For example, the vehicle sensors may be configured to generate a signal indicative of a vacant parking spot. In another embodiment, the vehicle sensors may be configured to generate a signal indicative of the type of vehicle located in the parking spot. For example, the vehicle sensor may be configured to generate a signal indicative of a motorcycle, a signal indicative of a car, a signal indicative of a truck, etc., being present in parking space 26. As another example, the vehicle sensor may be configured to generate a signal indicative of a privately owned vehicle located in parking space 26 and a different signal indicative of a publicly-owned or government vehicle located in parking space 26. In other embodiments, a vehicle sensor may include a digital camera configured to capture image data of a vehicle located in the parking spot.

Referring back to FIG. 1, parking system 10 may include one or more mobile citation units, shown as handheld unit 34. Handheld unit 34 communicates with parking management system 18 via wireless network 16. In the embodiment shown in FIG. 1, handheld unit 34 includes wireless communications hardware for communication with parking management system 18 via wireless network 16. Handheld unit 34 is carried by parking enforcement personnel and is used to issue citations for parking violations. Handheld unit 34 sends various types of enforcement data (e.g., data indicating issuance of a citation, data related to the type of citation issued, location of parking violation, vehicle identification information, etc.) to parking management system 18 via wireless network 16. Handheld unit 34 also receives various information from parking management system 18. In one embodiment, handheld unit 34 receives information to facilitate the issuances of citations. For example, handheld unit 34 may receive data indicative of the existence and location of expired meters. In one embodiment, handheld unit 34 may receive data regarding which meters within a certain distance from unit 34 are expired. It should be understood that while the figures show a handheld citation unit, other mobile citation units may be used within parking system 10. For example, a mobile citation unit may be mounted within a vehicle driven by enforcement personnel.

In one embodiment, data generated by the vehicle sensor associated with each meter (e.g., data related to the presence of a vehicle within the space associated with the meter) may be communicated to parking management system 18 via the wireless communications hardware of the meter, and the data related to current space occupancy may be communicated from parking management system 18 to handheld unit 34. In an exemplary embodiment, the data generated by the vehicle sensors associated with each parking meter is processed to determine whether a vehicle is currently parked in the meter\'s parking space when time on the meter expires. If so it is determined that a parking violation has occurred. The single space meter then communicates data indicating that a parking violation has occurred to parking management system 18. Parking management system 18 then stores and communicates the data indicating that a parking violation has occurred to the handheld unit 34. This data then may be used by the enforcement personnel to issue a parking ticket. In one embodiment, following issuance of a parking ticket, data indicating that a parking ticket has been issued is communicated wirelessly from handheld unit 34 to parking management system 18 for processing and storage. In one embodiment, the data indicating that a parking ticket has been issued includes information identifying the vehicle (e.g., VIN, license plate information, etc.) that received the citation.

As can be seen, parking system 10 provides a system utilizing wireless communication between the three major components or subsystems (e.g., the meters, the management system, and the citation units). By providing a system in which the components in the field (e.g., the meters and the citation units) communicate wirelessly to parking management system 18, data storage and processing for parking system 10 can be centralized within parking management system 18. Further, parking system 10 allows real-time data from meters system-wide to communicate information to parking management system 18, which in turn allows up to date information regarding parking violations to be communicated to citation units 34 system wide.

Referring to FIG. 5, parking system 10 is shown according to another exemplary embodiment. In this embodiment, parking system 10 includes a plurality of single-space meters 12 each having a pole-mounted vehicle sensor 20, a wireless network 16 and a parking management system 18. This embodiment of parking system 10 includes a gateway 36, and single-space meters 12 are configured for short-range communication with gateway 36. In this embodiment, gateway 36 provides the communication link between multiple meters 12 and parking management system 18 via wireless network 16. In one such embodiment, single-space meters 12 are configured for short-range RF communication with gateway 36, and gateway 36 is configured for communication (e.g., cellular, WIFI, etc.) with parking management system 18 via wireless network 16. Communication between meters 12 and gateway 36 may be via any suitable RF communication technology, standard, or protocol (e.g., WIFI, IEEE 802.15.4, Bluetooth, ZigBee, etc.). Parking system 10 may also include one or more multi-space parking meter 14 in place of, or in addition to, single-space meters 12. In such an embodiment, the multi-space meter may also communicate with gateway 36 using a wireless, RF technology.

Referring to FIG. 6, another embodiment of parking system 10 is shown including a gateway 38 and a multi-space meter 40. In this embodiment, parking system 10 includes one or more stand-alone vehicle sensors, such as curb surface-mount sensor 22 and street surface-mount sensor 24, configured to monitor occupancy of the parking spaces associated with multi-space meter 40. In this embodiment, gateway 38 receives wireless communication from both single-space meters 12 and the stand-alone vehicle sensors (i.e., sensor 22 and sensor 24). Similar to the embodiment shown in FIG. 5, gateway 38 communicates information received from meters 12 and sensors 22 and 24 to parking management system 18 via wireless network 16. Multi-space meter 40 communicates directly with parking management system 18 via wireless network 16. In this embodiment, parking management system 18 is configured to properly associate the data received from the stand-alone vehicle sensors with the data for the appropriate parking space received from multi-space meter 40.

Also as shown in FIG. 6, parking system 10 may be configured to provide compatibility between parking meters made by different companies. For example, in one embodiment, parking meters 12 may be produced by a first company or manufacturer and multi-space meter 40 may be made by a second company or manufacturer. In this embodiment, sensors 20, 22 and 24 may be compatible with meters made by different companies. Further, parking management system 18 is configured to receive, store and process data received from parking meters or vehicle sensors made by different companies. This allows current, installed single-space and multi-space meters manufactured by different companies to be upgraded to provide the wireless communications and vehicle sensing functionalities discussed herein.

As shown in FIGS. 5 and 6, gateway 36 and gateway 38 may be mounted to an existing structure to provide for unobstructed transmission of RF signals from the meters to the gateways. For example, as shown in FIG. 5, a gateway may be mounted to a sign pole, or as shown in FIG. 6, a gateway may be mounted to a light or utility pole. In other embodiments gateways 36 and 38 may be located at other locations such as a roof top, tree or other structure that allows for unobstructed RF communication from the meters or standalone vehicle sensors of parking system 10. Further, gateways 36 and 38 may be located on a structure that provides for an AC power supply to power the gateway. In one embodiment, gateways 36 and 38 may be housed within the housing of a multi-space meter or may otherwise be incorporated into the electronic system of the multi-space meter. In this embodiment, the multi-space meter acts to receive information from the single-space meters and/or stand-alone vehicle sensors and communicates the information to parking management system 18 via wireless network 16. In another embodiment, gateways 36 and 38 may be mounted to and supported by the multi-space meter, for example by coupling the gateway housing to the exterior of the multi-space meter housing.

Referring to FIG. 7, a block diagram of parking system 10, is shown according to an exemplary embodiment, including a single-space parking meter 12. It should be understood that parking system 10 may include a plurality of single-space parking meters 12 and one or more multi-space meters as discussed above. As shown in FIG. 7, parking meter 12 includes a parking meter control system 50, a communication subsystem 52, a display 54, a power supply 56, a user input device 58, a payment subsystem 60 and a vehicle sensor 62. Parking meter control system 50 is communicably coupled to communication subsystem 52, display 54, power supply 56, user input device 58, payment subsystem 60 and vehicle sensor 62. Parking meter control system 50 may generally be any electronic control unit suitable to provide the various parking meter functionalities discussed below. For example control system 50 may include one or more processing circuits having hardware (e.g., processors, memory, communication interfaces, etc.) and/or software configured to control the operation of parking meter 12 as discuss herein. In one embodiment shown below in FIG. 13, control system 50 includes two processors that each control various device of meter mechanism 72.

Communication subsystem 52 includes hardware and/or software for communicating data between parking meter control system 50 and parking management system 18 via wireless network 16. As shown in FIG. 1 communication subsystem 52 may be a communication subsystem associated with a single-space parking meter 12 that is configured to communicate data between the associated meter and parking management system 18 via wireless network 16 utilizing standard mobile telephone communication systems (e.g., GSM, GPRS, EDGE, etc.). As shown, in FIGS. 5 and 6, communication subsystem 52 may include RF communication hardware and software physically coupled to single-space parking meter 12 and/or associated with a stand-alone vehicle sensor and a gateway, such as gateway 36 and 38. In this embodiment, data is communicated from single-space meter 12 or from the stand-alone vehicle sensor to the gateway and the gateway communicates the information to parking management system 18. In one embodiment, communication subsystem 52 includes a wireless communication antenna that is supported, and may be directly supported, by the inner housing of the electronic meter mechanism.

Single-space meter 12 also includes a display 54 that displays various parking related information (e.g., parking rate, current time and date, time remaining on meter, a meter expired message, user operation instructions, hours of meter operation, etc.) to the user of single-space meter 12. Display 54 may be a graphical high contrast, low power display. The display may be color or monochrome. Display 54 may be an LED display or LCD display. In the embodiment shown best in FIGS. 22 and 24, display 54 includes both a front facing screen on the sidewalk facing side of the meter and a rear facing screen on the street facing side of the meter.

Single-space meter 12 also includes a power supply 56 suitable to power the functions of single-space meter 12 discussed herein. In one embodiment, power supply 56 may include one or more solar cells or solar panels and one or more self-sustained energy storage devices (e.g., rechargeable batteries, ultracapacitors, etc.). In other embodiments, power supply 56 may be wired AC power supply. In one embodiment, single-space meter 12 may be configured to communicate power supply data wirelessly to parking management system 18 via the meter\'s wireless communication hardware. Power supply data may include data related to a battery and/or solar cell of the meter (e.g., battery charge rate, remaining battery charge, remaining battery life, real-time current supplied by solar cell, average current supplied by solar cell, resistance at various sections within the power supply, error messages indicating battery failure, error messages indicating solar panel failure, real-time power consumption, average power consumption, etc.). In one embodiment, single space meter 12 and/or electronic meter mechanism 72 may include one or more sensors configured to detect vandalism. In such embodiments the vandalism sensors may be associated with the electronic meter mechanism, the outer housing of the meter, the meter pole and/or the sensor housing. In various embodiments, the vandalism sensors may be configured to detect a strong impact (such as a hit from a crowbar) or the insertion of a tool into the coin slot or key hole associated with the meter. In various embodiments, the vandalism sensor may include or more of a vibration sensor, an acceleration sensor, optical sensors and/or acoustic sensors.

Single-space meter 12 also includes a user input device 58 that allows the user to interact with and operate the meter. In one embodiment, user input device 58 is a four button keypad that provides tactile feedback and/or audible feedback to the user. Single-space meter 12 also includes a payment subsystem 60 configured to receive and process payment for parking. In one embodiment, payment subsystem 60 includes currency reader (e.g., a money or coin slot and a money detector, a bill slot and bill detector, etc.), a credit-card, mag-strip reader, a smart card reader, and/or a “pay by phone” system. Further, single-space meter 12 also includes a vehicle sensor 62 (e.g., pole-mount vehicle sensors 20, curb surface-mount sensor 22 and street surface-mount sensor 24 as shown in FIGS. 1, 5 and 6, and/or sensor 28 shown in FIG. 4) that communicates information to control system 50 regarding an aspect of a vehicle in the parking space associated with meter 12.

Referring to FIGS. 8A, 8B, 9 and 22-24, single-space meter 12 is shown according to an exemplary embodiment. Referring to FIGS. 8A and 8B, single-space meter 12 is shown according to an exemplary embodiment. Single-space meter 12 includes an outer housing 70 and an electronic meter mechanism 72 (shown outside of outer housing 70 in FIG. 9). Outer housing 70 acts to protect electronic meter mechanism 72 and includes a locking mechanism to prevent unwanted access to meter mechanism 72. Outer housing 70 includes a lower housing portion 71 and a cap portion 73. Cap 73 of outer housing 70 includes a transparent portion or window 74 which allows the user to view the display of electronic meter mechanism 72 when it is locked within outer housing 70. Lower portion 71 of outer housing 70 is coupled to an upper end of a support structure or pole 75 that supports meter 12. Lower portion 71 of outer housing 70 has an interior cavity 77 and a front (i.e., sidewalk facing) face 76 having a payment device opening, shown as an aperture 78. To assemble meter 12, electronic meter mechanism 72 is received within cavity 77 and cap 73 is coupled to lower portion 71 such that electronic meter mechanism 72 is secured within housing 70.

Referring to FIG. 9 and FIGS. 22-24, electronic meter mechanism 72 is shown outside of meter housing 70. Electronic meter mechanism 72 includes an inner housing 80 that supports the various components and electronics of electronic meter mechanism 72. Inner housing 80 is generally the shell or structure the encases and supports the electronics of meter mechanism 72. Inner housing 80 also couples to the inner surface of outer housing 70 such that electronic meter mechanism 72 may be supported by and secured to outer housing 70. As discussed above, electric meter mechanism 72 includes an electronic display screen, shown as display 54, that displays information to the user. In one embodiment, display 54 includes a first screen viewable from the front of meter mechanism 72 and a second screen viewable from the rear of meter mechanism 72.

Generally, meter mechanism 72 includes a payment receiving structure including one or more payment devices configured to receive payment from a motorist (e.g., a credit card reader, a currency reader, a smart card reader, etc.). In addition, meter mechanism 72 includes a user input device (e.g., a keypad, touch screen, buttons, switches, etc.) that receives inputs from the motorist in order to operate the parking meter. Typically, the payment receiving structure and the user input device is located on the front side of the inner housing such that the motorist is located on the sidewalk when applying payment to the meter or interacting with the user input device.

The exemplary embodiment of electronic meter mechanism 72 shown in FIG. 9 includes an integrated payment and user-interface structure 82 that extends outward from the front side of inner housing 80. Structure 82 includes both at least the physical, payment receiving components of both the payment subsystem 60 and the user input device 58. Structure 82 is an extended portion of the housing that supports both the payment receiving structure and the user input device of meter mechanism 72. In the embodiment shown, user input device 58 is a four button interface including up and down arrow keys, an OK button and a cancel button. Payment subsystem 60 includes a hybrid card reader including both a smart card reader 84 and a credit card mag strip reader 86. Payment subsystem 60 also includes a money slot, shown as coin slot 88, and located within structure 82 is a currency reader that detects currency (coins in the example shown) that passes through coin slot 88. In other embodiments, the money slot and currency reader may be configured to accept and detect paper money. Smart card reader 84 may be configured to read a variety of smart-card type payment cards, for example, smart-card credit cards, smart-card debit cards, proprietary parking payment smart cards, etc. Credit card reader 86 may be configured to read a variety of mag-strip based payment cards, including, mag-strip credit cards, mag-strip debit cards, proprietary parking mag-strip payment credit cards, etc. In another embodiment, payment subsystem 60 also includes an RF based payment system configured to read an RFID tag associated with the vehicle (e.g., iPass), and to process a parking payment to a pre-registered account associated with the vehicle\'s RFID tag.

As shown best in FIGS. 22 and 23, inner housing 80 includes a first arm or portion 280 and a user input housing, shown as keypad housing 282. Arm portion 280 extends substantially perpendicular from the front face of inner housing 80, and keypad housing 282 is coupled to the front edge of portion 280 and extends downward away from portion 280. The keys of the keypad form the front face of keypad housing 282. As shown in FIG. 9, the keys of user interface 58 are located below the coin slot 88 and is located below a majority of the credit card slot of credit card reader 86.

A gap 284 (shown best in FIG. 23) is formed between the front surface 286 of inner housing 80 and the rear surface 288 of keypad housing 282. When electronic meter mechanism 72 is mounted to outer housing 70, the front surface of outer housing 70 below aperture 78 is received within gap 284 such that integrated payment and user-interface structure 82 extends through outer housing 70 (as shown in FIGS. 8A and 8B). This arrangement may help to secure meter mechanism 72 to housing 70 and may help to properly locate electronic meter mechanism 72 relative to the outer meter housing during installation. In one embodiment, the length of arm portion 280 is such that rear surface 288 of keypad housing 282 is in contact with and flush against the front surface of outer housing 70 below aperture 78 when meter mechanism 72 is within housing 70. As shown in FIG. 23, the portion of integrated payment and user-interface structure 82 that includes the mag-strip reader of credit card reader 86 extends outward from front face 286 of inner housing 80 beyond key pad 58. The extended length of the housing portion that supports mag-strip reader of credit card reader 86 in the direction perpendicular to the front face of inner housing 80 provides sufficient length to allow full insertion of a credit card into the credit card reader. This relative sizing allows meter mechanism 72 to include an upgraded payment system (e.g., one including a credit card reader) and to be installed in a pre-existing outer meter housing 70.

Referring to FIG. 9, credit card reader 86 includes a slot 87 formed in the front face of structure 82. Slot 87 provides the entrance that allows a credit card to be inserted into and to be read by the mag-strip reader of credit card reader 86. As shown, slot 87 is angled at an angle A relative to the vertical axis of the front face of structure 82. In the embodiment shown, slot 87 is angled such that the upper end of the slot is located laterally inward from the lower end of the slot. Slot 87 extends downward and laterally outward from its upper end to its lower end. In various embodiments, angle A is between 30 degrees and 80 degrees, preferably between 40 and 70 degrees and more preferably between 50 and 60 degrees. In one specific embodiment, angle A is about 55 degrees (e.g., 55 degrees plus or minus half a degree). As shown in FIG. 9, slot 87 extends below and laterally to the outside of the upper edge of the keypad. In other embodiments, slot 87 may angled in the opposite direction such that the upper end of the slot is located laterally outward from the lower end of the slot. Because the length of slot 87 is determined by the size of the type of credit card to be read, angling slot 87 allows for conservation of space on the front face of structure 82.

Referring back to FIG. 8A, with electronic meter mechanism 72 located within outer housing 70, the payment-user interface structure 82 of electronic meter mechanism 72 extends through aperture 78 such that the user can interact with the payment systems and the user interface. As shown in FIG. 22, front facing surface 290 of keypad housing 282 includes the buttons of user interface 58. As shown in FIG. 23, front facing surface 290 is at an angle relative to surface 286 and to the vertical plane defined by display 54, such that front facing surface 290 is facing slightly upward.

Referring to FIG. 9 and FIG. 22, electronic meter mechanism 72 includes a front solar panel 90 that provides power to operate electronic meter 72 and to charge a rechargeable battery located inside inner housing 80. Inner housing 80 includes a front support, shown as front shelf 92, upon which front solar panel 90 is mounted. Further, shelf 92 extends from the front surface (i.e., the sidewalk facing surface) of inner housing 80 and is positioned below (i.e., at a lower position as measured along the vertical axis of the meter mechanism) display 54 such that shelf 92 is located below window 74 of outer housing 70. In this embodiment, shelf 92 is also located above structure 82. In the embodiment shown, shelf 92 is coupled to the front side of inner housing 80 at a position substantially underneath (i.e., at a position below along the same vertical axis) display 54. This arrangement allows electronic meter mechanism 72 to be mounted inside outer housing 70 while allowing sunlight to strike front solar panel 90. Thus, this positioning of solar panel 90 allows meter mechanism to be installed into a pre-existing meter housing in a configuration that allows sun light to reach panel 90 after the meter mechanism is secured within outer housing 70. In one embodiment, shelf 91 and solar panel 90 are positioned relative to the windows in the meter housing cap to maximize solar irradiance during normal operation.

As shown in FIG. 24, electronic meter mechanism 72 also includes a rear solar panel 91. Rear solar panel 91 is mounted to a rear shelf, shown as shelf 93, which extends from a rear surface of inner housing 80 at a position below display 54. As explained in more detail below regarding FIG. 25 and FIG. 26, rear solar panel 91 is also mounted to inner housing 80 such that light may pass through a rear window in meter housing 70 to strike rear solar panel 91. In other embodiments, electronic meter mechanism 72 may include one solar panel or more than two solar panels.

Both solar panel support shelves 92 and 93 extend outward away from display 54 and downward toward structure 82 and toward the lower edge of the meter housing. This arrangement is such that the upper surfaces of shelves 92 and 93 are angled (e.g., are non-horizontal, are not perpendicular to a vertical axis, etc.) such that the surfaces of both shelves face upward and outward away from display 54. This positioning provides mounting surfaces for solar panels 90 and 91 that facilitate capture of light through the windows 74 of outer housing 70.

As noted above, electronic meter mechanism 72 also includes display 54. Display 54 may be a backlit high-contrast display supporting the display of both text and graphics. Display 54 may be a monochrome display or a color display. As shown in FIG. 9, display 54 is supported by inner housing 80 at a position above (i.e., at a higher position as measured along the vertical axis of the meter mechanism) payment and user interface structure 82. As shown in FIG. 9, display 54 includes a left edge and a right edge, and in the embodiment shown, display 54 is rectangular having upper and lower edges perpendicular to both the left and right edges. In one embodiment, the width of solar panels 90 and 91 is greater than the width of display screen 54 such that the left and right lateral edges of solar panels 90 and 91 extend laterally beyond the left and right edges of display 54, respectively.

Electronic meter mechanism 72 is configured to provide wireless communication from the meter to parking management system 18. In one embodiment, electronic meter mechanism 72 may include cellular communications hardware (e.g., GPRS modem, antenna, etc.) located within and/or coupled to inner housing 80. In another embodiment, electronic meter mechanism 72 includes RF communications hardware (e.g., point-to-multipoint RF modem, antenna, etc.). In another embodiment, electronic meter mechanism 72 includes both cellular communications hardware and RF communications hardware allowing the mechanism to be incorporated into either systems using a gateway or using direct meter cellular communications. In other embodiments, electronic meter mechanisms 72 within parking system 10 may be configured to utilize multi-point to multi-point or mesh networking communication systems. In such embodiments, electronic meter mechanisms 72 may be configured to connect to a primary gateway. In one such networked embodiment, parking system 10 may be configured to determine the shortest and/or most reliable path through one or more gateways to reach parking management system 18. In such embodiments, networked meter mechanism 72 may be configured to detect or discover those gateways that are in range. In this embodiment, a node may send a first message to discover a gateway, and the gateways within range may respond back at random intervals within a predetermined time window. The node will then evaluate the link to the gateway and through the gateway (or gateways) to assess and select the shortest and/or most reliable path to the server.

Parking system 10 may utilize the vehicle sensing features and the communication features described above to provide for various automated and real-time parking system functions. FIG. 10 is a flow diagram showing the operation of single-space meter 12 and display 54 by the meter controller and parking management system 18 during the payment sequence of the parking meter. In one embodiment as shown in FIG. 10, parking system 10 may be configured to automatically initiate the beginning of the payment sequence and the display of the appropriate instructions on display 54 based upon detection of a vehicle within the parking space by the vehicle sensor.

Referring to FIG. 10, at step 100, if a vehicle is detected by the vehicle sensor, a signal is communicated from the sensor to the meter controller (e.g., parking meter control system 50), and the meter controller initiates display of the payment instructions. Alternatively, if at step 102, a user input is received by the user input device of the parking meter, the meter controller also initiates display of the payment instructions. At step 104, the meter displays a message asking the user to select the type of payment the user wishes to use. In the embodiment of FIG. 10, the user may select payment by coin, payment by credit card, payment by smart card or pay-by-phone options. The user may select the method of payment by interacting with the user interface to select the desired payment type from a menu shown on the meter display. The user may also select the method of payment by directly using one of the payment devices of the meter without first making a selection via the user input device. For example, the user may select the payment method by swiping a credit card or by inserting coins into the coin slot. In one embodiment, parking meter control system 50 is configured to allow a vehicle to park in the space associated with the meter for a set “grace period” prior to moving to step 104. In this embodiment, parking meter control system 50 is configured to allow a set amount of free parking time prior to requiring payment to be applied to the meter. In one embodiment, free time (e.g., 15 minutes, 20 minutes, 30 minutes, etc.) may be automatically applied to the meter when a vehicle is detected in the parking space by a vehicle sensor at step 100. In this embodiment, the motorist may add additional time via payment as discussed below.

As shown in the remainder of FIG. 10, based on the user\'s payment type selection, the meter displays instructions for the selected payment type, and the user follows the instructions to put the appropriate amount of time on the parking meter, and the meter processes the payment received by the user to apply the payment to the meter. Specifically, the user or motorist may insert coins, and at step 106, the single-space meter detects the coins added to the meter. At step 108, the meter control system adds the appropriate amount of time for the coins deposited to the meter and displays the amount of time on the screen. At step 110, the single-space meter detects whether additional coins have been added and if so the meter time is updated as needed. At step 112, the single-space meter detects whether user has attempted to add time using one of the other payment methods, and if so, the payment processing for a smart card or credit card is conducted. If no additional payment is detected, the payment is applied to the meter at step 114 and the single-space meter monitors the time remaining on the meter and awaits for input.

The motorist may add time to the meter using a credit card, and at step 116, the single-space meter detects whether a credit card has been inserted into the credit card reader. At step 118, the meter prompts (e.g., by the display of instructions on screen 54) the user to use the up and down arrow keys to select the amount of time the user wishes to add to the meter. When the appropriate amount of time is added to the meter, the single-space meter detects the user\'s activation of the enter or OK button, at step 120. At step 122, the single-space meter submits the transaction data for authorization of the credit card. If the credit card payment is accepted, at step 124, the total time added to the meter is displayed, and the payment is applied to the meter at step 114 and the single-space meter monitors the time remaining on the meter and awaits for input. At step 126, if the credit card transaction is declined, the meter displays an indication that the credit card payment was not accepted and displays the current time remaining on the meter if any. If real-time authorization of the credit card is not available, at step 128, the meter determines whether batching of the credit card transaction is available. If batching is available, at step 124, the total time added to the meter is displayed, and the payment is applied to the meter at step 114 and the single-space meter monitors the time remaining on the meter and awaits for input. If batching is not available, the meter displays a message that credit card payment is unavailable at step 130.

At step 104, the user may select the pay by phone options, and the meter displays instructions to the motorist regarding payment by phone. At step 132, the payment by phone number is displayed to the motorist. At step 134, the meter number is entered, and at step 136, the communication type is determined. If MSM communication is selected, at step 138 the space number is entered. At step 140, the user is prompted to enter the amount of time to be added to the meter, and the payment is applied to the meter at step 114 and the single-space meter monitors the time remaining on the meter and awaits for input. At step 142, the user may selected whether receive text reminders indicating the amount of time left on the meter.

In various embodiments, the vehicle sensor is configured to communicate a signal to the meter controller indicative of whether a vehicle has left the parking space. In one such embodiment shown in FIG. 11, at step 150 the vehicle sensor associated with a parking spot detects that the current vehicle is leaving the parking space. At step 152, the time remaining on the meter for the parking spot is set to zero by the controller after the current vehicle leaves the parking space. Zeroing the time on the meter when the current vehicle leaves the parking space may lead to an increase in parking revenue by preventing a subsequent parker from utilizing meter time from a previous parker.

In one embodiment, the parking meter may be a single-space meter, and the signal indicative of the vehicle leaving the parking spot is communicated to the parking meter control system associated with that meter. When the signal indicating vehicle departure is received from the vehicle sensor, the parking meter control system zeros out the display of remaining time on the meter. As noted above, in one embodiment, the vehicle sensor is physically coupled to the meter or the meter pole and communicates the signal via a hardwired connection to the single-space meter controller.

In another embodiment, the vehicle sensor may be a stand-alone vehicle sensor associated with a multi-space meter, and in this embodiment, the signal indicative of the vehicle leaving the parking spot may be communicated to the parking meter control system associated with the multi-space meter. In this embodiment, the controller of the multi-space meter may zero out the time associated with the parking spot. In another embodiment, the vehicle sensor may communicate the signal indicative of the vehicle leaving the parking spot directly to the parking management system. In this embodiment, the time associated with the parking space as maintained by the parking management system may be set to zero. Further, the parking management system may transmit a signal to the multi-space meter indicating that the time associated with the parking space should be set to zero.

At step 154, the parking meter control system communicates parking space data to the parking management system. The parking space data communicated to the parking management system may include various parking space information including information related to vehicle departure, information indicating a vacant parking space, information indicating that no time is left on the meter, information indicating the length of time that the vehicle was parked in the parking spot, etc. This data may be utilized by the parking management system (e.g., parking management system 18) to provide the various functions discussed herein.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Electronic parking meter with vehicle sensor patent application.
###
monitor keywords

Browse recent Duncan Solutions, Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Electronic parking meter with vehicle sensor or other areas of interest.
###


Previous Patent Application:
Downhole data transmission system
Next Patent Application:
Remote monitoring system
Industry Class:
Communications: electrical
Thank you for viewing the Electronic parking meter with vehicle sensor patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.75874 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2819
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120286968 A1
Publish Date
11/15/2012
Document #
13468873
File Date
05/10/2012
USPTO Class
34087002
Other USPTO Classes
International Class
08C15/06
Drawings
28


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Duncan Solutions, Inc.

Browse recent Duncan Solutions, Inc. patents