FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2014: 1 views
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Interactive sound reproducing

last patentdownload pdfdownload imgimage previewnext patent


20120281852 patent thumbnailZoom

Interactive sound reproducing


An audio system attachable to a computer includes a sound reproduction device for producing audible sound from audio signals. The sound reproduction device includes a radio tuner and a powered speaker. The audio system further includes a connector for connecting the sound reproduction device with a computer. The computer provides audio signals from a plurality of sources, the sources including a computer CD player, digitally encoded computer files stored on the computer, and a computer network connected to the computer. The sound reproduction device further includes control buttons for controlling at least one of the computer CD player, the digitally encoded computer files and the computer network.

Browse recent Bose Corporation patents - Framingham, MA, US
Inventors: Paul E. Beckmann, Santiago Carvajal, Christopher H. Perry
USPTO Applicaton #: #20120281852 - Class: 381 80 (USPTO) - 11/08/12 - Class 381 
Electrical Audio Signal Processing Systems And Devices > One-way Audio Signal Program Distribution >Multiple Channel

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120281852, Interactive sound reproducing.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11,608,034, filed Dec. 7, 2006, and is a continuation of and claims priority to U.S. application Ser. No. 09/689,337, filed Oct. 12, 2000, now U.S. Pat. No. 7,277,765. The contents of each of these prior applications are incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

The invention relates to interactive sound reproducing and more particularly to sound reproducing from computer compact disk (CD) drives, network radio stations, broadcast radio stations, and digitally encoded computer files.

It is an important object of the invention to provide improved interactive sound reproducing.

BRIEF

SUMMARY

OF THE INVENTION

According to the invention, an audio system includes a sound reproduction device for producing audible sound from audio signals. The sound reproduction device includes a radio tuner, a powered speaker and a connector for connecting the sound reproduction device with a computer. The computer provides audio signals from a plurality of sources. The sources include a computer CD player, digitally encoded computer files stored on the computer, and a computer network connected to the computer. The sound reproduction device includes control buttons for controlling at least one of the computer CD player, the digitally encoded computer files and the computer network.

In another aspect of the invention, an audio system includes a sound reproduction device for producing audible sound from audio signals. The sound reproduction device includes an enclosure, enclosing a radio tuner and a powered speaker. The audio system further includes a connector for connecting the sound reproduction device with a computer, the computer for providing audio signals from a computer CD player, from digitally encoded computer files, and from a computer network.

In another aspect of the invention, an audio system includes a sound reproduction device for reproducing audible sound from audio signals, a computer coupled to the sound reproduction device for receiving the audio signals from a computer network, the audio signals being transmitted from an alternatively selectable plurality of network addresses, and a remote control device, for communicating commands to the sound reproduction device, the remote control device comprising a plurality of indicator buttons. An indicating one of the indicator buttons causes the computer to select a preassigned one of the network addresses.

In another aspect of the invention, an audio system includes a computer system and a sound reproduction system for reproducing audible sound from audio signals. The audio signals come from a plurality of selectable sources. A method for switching the sound reproduction system from an unpowered state to a powered state includes transmitting a control signal from the sound reproduction system to the computer system. If the computer system responds to the control signal, the method determining by the sound reproduction device that the computer system is in a responsive state and

If the computer system does not respond to the control signal, determining by the sound reproduction device that the computer system in an unresponsive state.

In another aspect of the invention, a radio receiver has a number n of preset indicators. A method for assigning broadcast frequencies to individual preset indicators includes determining the location of the radio receiver and scanning the frequency spectrum to determine the strongest signals.

In another aspect of the invention, a sound system includes a sound reproduction device coupled to a computer system and a remote control device, for transmitting encoded control commands to the sound reproduction device. A method for decoding the commands includes receiving, by the sound reproduction device, one of the encoded control commands, and decoding, by the sound reproduction device, the one received control command, and executing, by the sound reproduction device, the one received control command. In the event that the one received control command is not decodable or is not executable by the sound reproduction device, the method includes transmitting the encoded control command to the computer system.

In another aspect of the invention, an audio system includes a sound reproduction device for reproducing audible sound from audio signals from a plurality of sources. The sources including a radio tuner and at least one of a CD containing a plurality of individually indicatable tracks, a plurality of individually indicatable network addresses, and a plurality of individually indicatable digitally encoded files stored on a digital storage device. The audio system includes a source selector for selecting from the plurality of sources, a source of audio signals to be reproduced by the sound reproduction device and a control signal input device. If the selected source is the radio tuner, an activation of the control signal input device changes the tuning frequency of the radio tuner; if the selected source is the CD, an activation of the control signal input device changes the indicated CD track or play position within a track; and if the selected source is the selectable network addresses, an activation of the control signal device changes the indicated network address.

In another aspect of the invention, a method of operating an audio system adapted to reproduce sound from a plurality of digitally encoded files which contain identifying characteristics includes assigning a value of one of the identifying characteristics to a preset indicator; on the indicating of the preset indicator, searching the plurality of files for the value of the one identifying characteristic; and selecting for reproduction the digitally encoded files having the value.

In still another aspect of the invention, a method for selecting from a plurality of audio signal sources having identifying characteristics, a single audio signal source, includes specifying a value of one of the identifying characteristics; determining, by a computer, which of the audio signal sources have the value for the one characteristic; and selecting a single audio source from the plurality of audio signal sources.

According to another aspect of the invention, a method gives multiple sets of values to a single set of presets being used with a single source. The method changes the set of values by clicking on a graphic, such as a right or left arrow on the screen display, to bring up a new set of values for the presets. Typically, any one of the set of values is selectable by either clicking with the pointing device on the appropriate preset on the screen, pressing the selected preset on the remote, or pressing the preset on the radio.

Other features, objects, and advantages will become apparent from the following detailed description, which refers to the following drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a first configuration of a networked sound system according to the invention;

FIG. 2 is a block diagram of a second configuration of a networked sound system according to the invention;

FIG. 3 is a block diagram of the interface unit of FIGS. 1 and 2;

FIG. 4 is a diagram helpful in explaining the logical database relationships of recorded units and assemblages of recorded units;

FIG. 5 is a sound reproduction device control panel according to the invention;

FIG. 6 is a representation of an interface screen on a computer display in accordance with the invention;

FIG. 7 is a flow diagram for assigning broadcast radio frequencies to the preset buttons according to the invention;

FIG. 8 shows the buttons on the remote control device;

FIGS. 9A, 9B, 9C and 9D are schematic circuit diagrams of circuitry in a radio that implement elements 12, 14 and 16 of the system of FIG. 2; and

FIG. 10 is an implementation of the interface unit 54 of FIG. 2.

DETAILED DESCRIPTION

OF THE INVENTION

With reference now to the drawings and more particularly to FIG. 1, there is shown a first configuration of a networked sound system according to the invention. Sound reproduction device 10 includes an AM/FM tuner 12, audio signal processing circuitry 14, control electronics circuitry 16 for controlling the tuner and signal processing circuitry, a remote control device 17 for communicating commands to control electronics circuitry 16, and an electroacoustical transducer 18. An auxiliary (hereinafter “aux”) input 13 typically implemented as a signal jack permits the sound reproduction device to receive audio signals from outside sources, such as portable CD players. Computer system (PC) 20 includes a bus 22 which interconnects various computer system components and carries data and control signals between them. Hardware components may include CPU 24, RAM 26, CD player 28, a mass storage device, such as a hard disk 30, a network interface card 32, and a sound card 33. Computer system 20 also includes a number of external connectors for connecting bus 22 with various external devices. A first external connector 34 connects to an external display 36. A second external connector 38 connects to an external input device such as a mouse 40. A third external connector 42 connects to a keyboard 44. A fourth external connector 46 connects network interface card 32 to a local or wide area network for transmitting to and receiving signals from remote devices that are connected to the local or wide area network. A fifth external connector 43 connects to external mass storage device 45. Stereo jack 48 connects sound card 33 to radio audio signal processing circuitry 14 through analog input terminal 49. Audio system control connector 50 connects bus 22 to control electronics circuitry 16 through digital input terminal 51.

Referring now to FIG. 2, there is shown a second configuration of a networked audio system according to the invention. The elements of FIG. 2 are the same as the elements of FIG. 1, with some exceptions. Sound card 33 of FIG. 1 is not needed in this configuration. Stereo jack 48 and the audio system control connector 50 of FIG. 1 are replaced by a bus interface connector 52, which connects to an interface unit 54. The interface unit 54 connects to audio signal processing circuitry 14 through analog terminal 49 and to control electronics circuitry 16 through digital terminal 51. Interface unit 54 will be described in more detail in connection with a subsequent figure.

A networked audio system which contains both the powered speaker and the radio tuner in a single enclosure is advantageous over conventional audio systems which house the speakers and radio tuner in separate enclosures, because the system can then be configured to occupy less space in a work area.

Referring to FIG. 3, there is shown interface unit 54 in more detail. Signal line 56 from interface connector 52 is connected to logic circuitry 58. Logic circuitry 58 is coupled to D/A converter 60 which is connected to analog terminal 49 by analog signal line 62. Analog terminal 49 is in turn connected to audio signal processing circuitry 14. Logic circuitry 58 is connected to digital terminal 51 by digital signal line 64. Digital terminal 51 is in turn connected to control electronics circuitry 16. If bi-directional flow of analog signals is desired, a second analog signal path is provided. The second analog signal path includes a signal line between audio signal processing circuitry 14 and a second analog terminal 66; a second analog signal line 68 connecting second analog terminal 66 and an A/D converter 70; and a signal line connecting A/D converter 70 and logic circuitry 58.

In operation, logic circuitry 58 determines if transmissions on signal line 56 from bus 22 are intended for sound reproduction device 10. If signals on bus 22 are intended for sound reproduction device 10, logic circuitry 58 determines whether the signals are control signals or audio information. If the signals are control signals, logic circuitry 58 transmits signals to digital terminal 51 over digital signal line 64. If signals are audio information, logic circuitry transmits signals to D/A converter 60 which converts the digital signal to an analog audio signal. Analog audio signal is then transmitted over analog signal line 62 to analog terminal 49 and then to audio signal processing circuitry 14. The digital signal path including control circuitry 16, digital terminal 51, digital signal line 64, logic circuitry 58 signal line 56, and interface connector 52 is constructed and arranged to transmit signals bidirectionally, so that control signals originating at control circuitry 16 can be transmitted to computer bus 22 for processing by CPU 24. If bidirectional flow of analog circuitry is desired, analog signals may be transmitted from audio signal processing circuitry 14 to second analog terminal 66, and to A/D converter 70, where it is converted to a digital signal that is then transmitted to logic circuitry 58.

In one implementation, sound reproduction device 10 is a Wave® radio equipped with an appropriate communications ports, available from the Bose Corporation of Framingham, Mass. Computer system 20 may be a conventional multimedia personal computer.

There are typically three implementation arrangements for interface unit 54. One alternative is to implement interface unit 54 as a module in computer system 10. In this arrangement, interface unit 54 is implemented as a circuit board that connects internally to bus 22 (so that interface connector 52 is internal to the computer, and is physically connected to an expansion slot in the computer), signal lines 62, 64, and 68 are implemented as cables, and digital terminal 51, analog terminal 49 (and second analog terminal 66, if present) are external ports for the sound reproduction device 10.

A second alternative is to implement interface unit 54 as an intermediate, separate unit, typically integrated with cables which implement signal lines 62, 64, 68, and 56. In this arrangement, interface connector 52 is an external computer port, and digital terminal 51, analog terminal 49 (and second analog terminal 66, if present) are external ports for the sound reproduction device 10.

A third alternative is to implement interface unit 54 as a module, such as a circuit board, in the sound reproduction device 10. In this arrangement, sound reproduction device 10 has an external port to accommodate a cable that implements signal line 56, and the remaining signal lines and terminals are internal to sound reproduction device 10.

A networked sound system according to the invention may have a number of operating modes. In a first mode, sound reproduction device 10 operates as a standalone sound reproduction device (hereinafter “standalone mode”), similar to a conventional radio or hi-fi receiver. Operating in this mode, sound reproduction device operates independently of computer system 20, and even operates if computer system 20 is not running. In a second operating mode (hereinafter “sound effects mode”), sound reproduction device 10 operates as conventional computer speakers, reproducing sounds that are incidental to programs running on computer system 20. Examples may be sound effects in computer games, audible alarms and warnings, indicating, for example, that the computer system has received electronic mail. In a third operating mode (hereinafter “audio system mode”) sound reproduction device 10 operates as a processor and reproducer of audio signals from a variety of sources, including networked sources and components of the computer system 20.

When the system is operating in the sound effects mode and the audio systems mode, the operation of the components of the system is controlled by a software program running on computer system 20. For efficient use of computer resources, the software program may be divided into two program modules, one of which provides communications between components of computer system 20 and sound reproduction device 10, and a second which accesses sound sources as described below. Additionally, the first program module can contain instructions such that it automatically activates the second program module if it detects a communication from sound reproduction device 10 to computer system 20 that requires that the second module be running.

Operating in standalone mode, sound reproduction device 10 is controlled as, and operates as a standard radio or receiver. On/off, tuning, and volume control are all either entered by control buttons or dials that are connected electronically to control electronics circuitry 16, or by remote control device 17.

Operating in sound effects mode, sound reproduction device 10 is controlled as, and operates as, standard amplified computer speakers having an on/off switch and volume control.

Operating in audio systems mode, sound reproduction device 10 reproduces sound from tuner 12, aux input 13, digital audio signals stored in RAM 26, hard disk 30, or external mass storage device 45; audio signals received from sources connected to the local or wide area network connected to network interface 32; and other sources such as CD player 28 (which can be a component of computer system 20 as shown, or which can be a separate component, connected directly to sound reproduction device 10). The source or sources of the audio signals is controlled by a computer program running on computer system 20.

If sound reproduction device 10 is in the “off” state, and is turned “on” either by pressing the “on” or “power” button or a button or indicator performing an equivalent function, or by pressing the corresponding button on remote control device 17, control electronics circuitry 16 detects whether computer 20 is connected, and if connected, in the “on” or “off” state. If computer 20 is not connected or is in the “off” state, sound reproduction device 10 operates in standalone mode, and sound reproduction device begins reproducing audio signals from the last internal audio signal source (in one implementation, either AM or FM signals from AM/FM tuner 12, or signals from aux input 13). If computer 20 is in the “on” position and the second program module (as described above in the discussion of “Operating Modes”) is not running, the first program module activates the second program module, and the sound reproduction device begins producing signals from the last audio signal source, as described above in the discussion of “audio systems mode.” If computer 20 is in the “on” position and the second program module is running, the sound reproduction device begins producing signals from the last audio signal source.

Recorded on hard disk 30 or external mass storage 45 may be information about typically either AM broadcast, FM broadcast, broadcast radio stations available to the reproduction device 10 through tuner 12. Typically, availability is determined by a combination of proximity to and direction to the broadcast site, directionality and power of the broadcast signal, obstructions (such as tall buildings and mountains), and competing signals, especially those in nearby frequency bands. The list of radio stations available to the reproduction device may be assembled in a number of ways. In a simple form, the user may manually tune a radio station and manually enter into the data base identifying information about the radio station. In more sophisticated forms, the reproduction device may automatically scan the broadcast frequency spectrum and assemble a list of available radio stations by noting the frequency and by measuring signal strength of received signals, or a suggested list of radio stations, based on location information such as zip code, or can be compiled by a resource (such as the vendor of the reproduction device or a commercial information assembler). Information about each radio station can also be collected and stored. Such information can include: station broadcast frequency; station call letters and/or other identifiers; station format (news, type of music, location, and others).

Information about radio stations that are accessible over the local or wide area network (hereinafter web radio stations) is also acquired and stored. This information may be acquired through search engines, by commercially available listings from suppliers such as vTuner (vTuner.com), or assembled by the user. Information about web radio stations typically include a station identifier, a network address, a category (e.g. news, rock, jazz, sports, classical), and a location of origination.

The information about broadcast radio stations and web radio stations, respectively, may be organized and sorted based on any of the information types mentioned above.

In addition to reproducing sound, a networked sound system according to the invention can record, on hard disk 30 or external mass storage device 45. Recording can be done simultaneously with sound reproduction, or in the “background.” Sound is recorded in units, and the units are identified and information about the units are recorded in a data base. For example, a typical recording unit is a track on a CD. The information about each unit (track) may include title, composer, artist, category (e.g. classical, rock, blues). The information may be obtained automatically or by user intervention from commercially available internet sources and/or may be entered or edited by the user. Additionally, for other types of recording units, the information may be of other types (such as for radio broadcasts a station and a time interval; for athletic events the date and participating teams; for cultural events the date, performer, composer; and others). For convenience, recorded units and assemblages of recorded units are referred to as “music files” even though the recorded units are not necessarily recordings of music.

Referring now to FIG. 4, there is shown a diagram that will be used to discuss the logical relationships of recorded units and assemblages of recorded units. Recorded units 110-1 through 110-n each contain data representing the recorded sound and information about the recorded sound. Information could include the artist, the composer, and the type of music. A first type of assemblage of recorded units is an “album” represented here as items 112a, 112b, 112c. Albums 112a, 112b, and 112c may also have associated with them information similar to the information about the recorded units, such as artist, composer, and type of music. Albums may include recorded units that have different composers, artists, or type of music.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Interactive sound reproducing patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Interactive sound reproducing or other areas of interest.
###


Previous Patent Application:
Microphone system
Next Patent Application:
Sound emission and collection device
Industry Class:
Electrical audio signal processing systems and devices
Thank you for viewing the Interactive sound reproducing patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.62061 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2161
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120281852 A1
Publish Date
11/08/2012
Document #
13427404
File Date
03/22/2012
USPTO Class
381 80
Other USPTO Classes
International Class
04B3/00
Drawings
34



Follow us on Twitter
twitter icon@FreshPatents