FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2013: 2 views
2012: 1 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Method and system for equalizing holographic data pages

last patentdownload pdfdownload imgimage previewnext patent


20120281514 patent thumbnailZoom

Method and system for equalizing holographic data pages


Methods and systems for equalizing a holographic image page and for compensating nonlinearity of a holographic data storage channel are disclosed. In one embodiment, a method for equalizing a holographic image page includes receiving the holographic image page and dividing the holographic image page into a plurality of local image regions. The method further includes generating a local alignment error vector for each local image region, computing a local finite impulse response kernel for each local image region according to the corresponding local alignment error vector, and adjusting misaligned pixels of each local image region using the corresponding local finite impulse response kernel.
Related Terms: Finite Impulse Response Holographic Data Storage Local Alignment

Browse recent Inphase Technologies, Inc. patents - Longmont, CO, US
Inventors: MARK R. AYRES, Adrian J. Hill
USPTO Applicaton #: #20120281514 - Class: 369 5331 (USPTO) - 11/08/12 - Class 369 
Dynamic Information Storage Or Retrieval > Condition Indicating, Monitoring, Or Testing >Including Radiation Storage Or Retrieval >Of Storage Or Retrieval Information Signal

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120281514, Method and system for equalizing holographic data pages.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The present invention relates to the field of holographic data storage system. In particular, the present invention relates to a method and system for equalizing holographic data pages.

BACKGROUND OF THE INVENTION

Holographic data storage systems store information or data based on the concept of a signal beam interfering with a reference beam at a holographic storage medium. The interference of the signal beam and the reference beam creates a holographic representation, i.e., a hologram, of data elements as a pattern of varying refractive index and/or absorption imprinted in a volume of a storage or recording medium such as a photopolymer or photorefractive crystal. Combining a data-encoded signal beam, referred to as an object beam, with a reference beam creates the interference pattern at the storage medium. A spatial light modulator (SLM), for example, can create the data-encoded signal beam. The interference pattern induces material alterations in the storage medium that generate the hologram. The formation of the hologram in the storage medium is a function of the relative amplitudes and polarization states of, and phase differences between, the signal beam and the reference beam. The hologram is also dependent on the wavelengths and angles at which the signal beam and the reference beam are projected into the storage medium. After a hologram is created in the storage medium, projecting the reference beam into the storage medium reconstructs the original data-encoded signal beam. The reconstructed signal beam may be detected by using a detector, such as CMOS photo-detector array or the like. The detected data may then be decoded into the original encoded data.

In a page-oriented holographic data storage device, it is advantageous to minimize the size of the holograms in order to achieve maximum storage density. One method of accomplishing this is minimizing the size of the page imaging aperture. However, minimizing the size of the aperture has the consequence of increasing blur, in terms of broadening the pixel spread function (PSF) in the page images. This blur decreases the signal-to-noise ratio (SNR) of the holographic storage device, which increases the bit error rate (BER) of the system, and which in turn limits the storage density.

Since blur in an image is a deterministic process, much of the SNR loss may be reclaimed by digitally post-processing the detected page image. Traditionally, the detected image is convolved with a small kernel matrix w, also known as a kernel, representing an inverse blurring operation (de-convolution), thereby implementing a finite impulse response (FIR) filter equalization.

The kernel of a FIR filter, for example a 3×3 or a 5×5 matrix, may be determined by several methods known in the current art. For example, if the page image pixel spread function is known, a zero-forcing equalizer may be designed by calculating the linear inverse of the PSF. An example of the zero-forcing method is described in “Channel estimation and intra-page equalization for digital volume holographic data storage,” by V. Vadde and B. Kumar in Optical Data Storage 1997, pp. 250-255, 1997. Another approach is to choose FIR filter coefficients that minimize the difference between the equalized data page image and the original data page. Such a method is described in “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” by M. Keskinoz and B. Kumar in Applied Optics, vol. 38, no. 20, Jul. 10, 1999.

Performance of FIR equalization as shown in the prior art is limited in at least two aspects. First, blur in a coherent imaging system is not a linear process. Although coherent light adds linearly in electric field strength, detectors can only directly detect irradiance. This introduces a nonlinear absolute value squared transformation. Furthermore, each detector element (pixel) integrates the irradiance over an area, introducing a further nonlinearity. Prior art has disclosed ways to solve this problem either through a “magnitude model” (operating on the square root of the detected values, but lacking phase information), or through an “intensity model” (operating on the PSF and the pixel fill factors). An example of both the “magnitude model” and the “intensity model” is described in “Channel modeling and estimation for intra-page equalization in pixel-matched volume holographic data storage,” by V. Vadde and B. Kumar in Applied Optics, vol. 38, no. 20, Jul. 10, 1999.

Second, the performance of FIR equalization described by the prior art is limited because real imaging systems are not perfect shift invariant linear systems. In other words, the pixel spread function is not constant at all locations in the field of view. There are a number of factors that create variations in the width or shape of the PSF throughout the field of view. For example, variations may be caused by lens aberrations and misalignment; by distortions, shrinkage, and other non-ideal media responses; and by misalignment and wavefront errors in the reconstructing reference beam. A significant consequence of these effects in a pixel-matched system is the degradation of the pixel matching, because image distortion shifts local areas of the image with respect to the detector pixels. For example, a uniform shrinkage of the medium causes the holographic image to be magnified, producing a radial displacement such that data pixel images are no longer centered on their respective detector pixels.

Therefore, new methods and systems for addressing the issues of the prior art methods are needed. In particular, methods and systems for equalizing holographic image data are needed to improve the storage density of the holographic data storage system. Further, methods and systems for compensating nonlinearity of the holographic data storage channel are also needed to improve the storage density of the holographic data storage system.

SUMMARY

A method for equalizing a holographic image page includes receiving the holographic image page and dividing the holographic image page into a plurality of local image regions. The method further includes generating a local alignment error vector for each local image region, computing a local finite impulse response kernel for each local image region according to the corresponding local alignment error vector, and adjusting misaligned pixels of each local image region using the corresponding local finite impulse response kernel.

In another embodiment, a method for compensating nonlinearity of a holographic data storage channel includes selecting a metric for measuring data accuracy of a holographic image page and computing a set of values of the metric over a predetermined set of linearization exponents. The method further includes selecting a desired linearization exponent for generating a desired value of the metric that corresponds to a desired data accuracy of the holographic image page, and adjusting the nonlinearity of the holographic data storage channel in accordance with the desired linearization exponent.

In yet another embodiment, a method for equalizing a holographic image page includes receiving the holographic image page and dividing the holographic image page into a plurality of image regions, and deriving an expected blur and an actual blur for each image region. The method further includes computing a pixel-signal-error-ratio between the actual blur and the expected blur for each image region, computing a local finite impulse response kernel in accordance with the pixel-signal-error-ratio and a predetermined global final impulse response, and adjusting misaligned pixels of each local image region using the corresponding local finite impulse response kernel.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned features and advantages of the invention as well as additional features and advantages thereof will be more clearly understood hereinafter as a result of a detailed description of embodiments of the invention when taken in conjunction with the following drawings.

FIG. 1 illustrates a holographic data storage system according to an embodiment of the present invention.

FIG. 2A illustrates an exemplary 21 pixel×21 pixel image data generated by the spatial light modulator.

FIG. 2B illustrates the 21 pixel×21 pixel image data of FIG. 2A detected at the output of the holographic data storage system without being processed by the inventive techniques.

FIG. 2C illustrates the 21 pixel×21 pixel image data of FIG. 2A after being processed according to an embodiment of the present invention.

FIG. 3A is a histogram of the unprocessed pixel image data according to an embodiment of the present invention.

FIG. 3B is a histogram of the processed pixel image data after being processed according to an embodiment of the present invention.

FIG. 4A illustrates a portion of a 3 pixel×3 pixel of an exemplary data image.

FIG. 4B illustrates an intensity profile resulting from adding and squaring the electric field strengths of pixels in the first row of FIG. 4A according to an embodiment of the present invention.

FIG. 5 illustrates a method for selecting a linearization exponent according to an embodiment of the present invention.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Method and system for equalizing holographic data pages patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method and system for equalizing holographic data pages or other areas of interest.
###


Previous Patent Application:
Recording apparatus, recording method, and optical recording medium
Next Patent Application:
Disc drive system
Industry Class:
Dynamic information storage or retrieval
Thank you for viewing the Method and system for equalizing holographic data pages patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 2.70499 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning , -g2--0.767
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120281514 A1
Publish Date
11/08/2012
Document #
13551715
File Date
07/18/2012
USPTO Class
369 5331
Other USPTO Classes
G9B 27052
International Class
11B27/36
Drawings
7


Finite Impulse Response
Holographic Data Storage
Local Alignment


Follow us on Twitter
twitter icon@FreshPatents