FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2013: 1 views
2012: 1 views
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Suspended media membrane biological reactor system and process including multiple biological reactor zones

last patentdownload pdfdownload imgimage previewnext patent


20120279920 patent thumbnailZoom

Suspended media membrane biological reactor system and process including multiple biological reactor zones


A wastewater treatment system is provided comprising a first biological reaction zone, a second biological reaction zone and a membrane operating system. The first biological reaction zone is constructed and arranged to receive and treat the wastewater. The second biological reaction zone includes a separation subsystem and is constructed and arranged to receive effluent from the first biological reaction zone. A suspension system for adsorbent material is provided in the second biological reaction zone. The membrane operating system is located downstream of the second biological reaction zone and is constructed and arranged to receive treated wastewater from the second biological reaction zone and discharge a membrane permeate.

Inventors: William G. Conner, Mohammed A. Al-Hajri, Thomas E. Schultz, Michael Howdeshell, Chad L. Felch, Matthew Patterson, Samuel Shafarik, Curt Cooley
USPTO Applicaton #: #20120279920 - Class: 210631 (USPTO) - 11/08/12 - Class 210 
Liquid Purification Or Separation > Processes >Treatment By Living Organism >And Additional Treating Agent Other Than Mere Mechanical Manipulation (e.g., Chemical, Sorption, Etc.)

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120279920, Suspended media membrane biological reactor system and process including multiple biological reactor zones.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/224,000 filed Jul. 8, 2009, and U.S. Provisional Patent Application No. 61/186,983 filed on Jun. 15, 2009, the disclosures of which are hereby incorporated by reference in their entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to wastewater treatment systems and methods.

2. Description of Related Art

Effective handling of domestic sewage and industrial wastewater is an extremely important aspect of increasing the quality of life and conservation of clean water. The problems associated with simply discharging wastewater in water sources such as rivers, lakes and oceans, the standard practice up until about a half century ago, are apparent—the biological and chemical wastes create hazards to all life forms including the spread of infectious diseases and exposure to carcinogenic chemicals. Therefore, wastewater treatment processes have evolved into systems ranging from the ubiquitous municipal wastewater treatment facilities, where sanitary wastewater from domestic populations is cleaned, to specialized industrial wastewater treatment processes, where specific pollutants in wastewater from various industrial applications must be addressed.

Biologically refractory and biologically inhibitory organic and inorganic compounds are present in certain industrial and sanitary wastewater streams to be treated. Various attempts have been made to address treatment of such biologically refractory and biologically inhibitory compounds. Certain types of known treatment include use of powdered activated carbon to adsorb and subsequently remove biologically refractory and biologically inhibitory organic compounds.

Nonetheless, a need exists to treat wastewater containing biologically refractory and biologically inhibitory organic and inorganic compounds without disadvantages associated with using powdered activated carbon and other existing technologies.

SUMMARY

OF THE INVENTION

In accordance with one or more embodiments, the invention relates to a system and method of treating wastewater.

In accordance with one or more embodiments, the invention relates to a wastewater treatment system for treating wastewater. The system includes a first biological reaction zone, a second biological reaction zone and a membrane operating system. The first biological reaction zone is constructed and arranged to receive and treat the wastewater. The second biological reaction zone includes a separation subsystem and is constructed and arranged to receive effluent from the first biological reaction zone. A suspension system for adsorbent material is provided in the second biological reaction zone. The membrane operating system is located downstream of the second biological reaction zone and is constructed and arranged to receive treated wastewater from the second biological reaction zone and discharge a membrane permeate.

In accordance with one or more embodiments, the first biological reaction zone and the second biological reaction zone are segregated sections of the same vessel.

In accordance with one or more embodiments, the first biological reaction zone and the second biological reaction zone are located in separate vessels.

In accordance with one or more embodiments, the suspension system comprises a gas lift suspension system. The gas lift suspension system can include at least one draft tube positioned in the second biological reaction zone and a gas conduit having one or more apertures positioned and dimensioned to direct gas to an inlet end of the draft tube. The gas lift suspension system can alternatively include at least one draft trough positioned in the second biological reaction zone and a gas conduit having one or more apertures positioned and dimensioned to direct gas to a lower portion of the draft trough.

In accordance with one or more embodiments, the suspension system comprises a jet suspension system.

In accordance with one or more embodiments, the separation subsystem includes a screen positioned at an outlet of the second biological reaction zone.

In accordance with one or more embodiments, the separation subsystem includes a settling zone located proximate the outlet of the second biological reaction zone. The settling zone can include a first baffle and a second baffle positioned and dimensioned to define a quiescent zone in which the adsorbent material separates from mixed liquor and settles into the mixed liquor in a lower portion of the biological reactor. Further, the settling zone can include a screen or a weir positioned proximate the outlet of the second biological reaction zone.

In accordance with one or more embodiments, the invention relates to a wastewater treatment system in which a source of adsorbent material introduction apparatus in communication with the second biological reaction zone. In addition, a sensor is constructed and arranged to measure a parameter of the system. Further, a controller is in electronic communication with the sensor and programmed to instruct performance of an act based on the measured parameter of the system. The measured parameter can be the concentration of one or more predetermined compounds. The act can include removing at least a portion of the adsorbent material from the second biological reaction zone, and/or adding adsorbent material to the second biological reaction zone.

In accordance with one or more embodiments, the invention relates to a wastewater treatment system for treating wastewater. The system includes a first biological reaction zone having a wastewater inlet and a first zone mixed liquor outlet. The system also includes a second biological reaction zone having a mixed liquor inlet in fluid communication with the first zone mixed liquor outlet, a suspension system for adsorbent material, a second zone mixed liquor outlet, and a separation subsystem associated with the second zone mixed liquor outlet. The system further includes a membrane operating system located downstream of the second biological reaction zone having an inlet in fluid communication with the second zone mixed liquor outlet, and a treated effluent outlet.

In accordance with one or more embodiments, the invention relates to a process for treating wastewater. The process includes introducing mixed liquor into a first biological reaction zone to form a treated mixed liquor; passing the treated mixed liquor to a second biological reaction zone; suspending adsorbent material in the treated mixed liquor of the second biological reaction zone, the action of suspension operating under conditions that promote adsorption of contaminants in treated mixed liquor on the adsorbent material; and passing an effluent that is substantially free of adsorbent material from the second biological reaction zone to a membrane operating system while maintaining adsorbent material in the second biological reaction zone.

Still other aspects, embodiments, and advantages of these exemplary aspects and embodiments, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. The accompanying drawings are included to provide illustration and a further understanding of the various aspects and embodiments, and are incorporated in and constitute a part of this specification. The drawings, together with the remainder of the specification, serve to explain principles and operations of the described and claimed aspects and embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail below and with reference to the attached drawings all of which describe or relate to apparatus, systems and methods of the present invention. In the figures, which are not intended to be drawn to scale, each similar component that is illustrated in various figures is represented by a like numeral. In the figures:

FIG. 1 is a schematic diagram of a membrane biological reactor system using a biological reactor which contains one or more zones with adsorbent material in suspension;

FIG. 2 is a schematic diagram of an embodiment of a system for treatment of wastewater using adsorbent material in a biological reactor upstream of a membrane operating system;

FIG. 3 is a schematic diagram of a second embodiment of a system similar to that shown in FIG. 2 which includes a denitrification zone;

FIG. 4 is a schematic diagram of another embodiment in which adsorbent material is maintained in suspension in only a portion of a biological reactor tank;

FIG. 5 is a schematic diagram of a further embodiment of a biological reactor divided into multiple sections that includes an anoxic zone;

FIG. 6 is a schematic diagram of an additional embodiment using a series of biological reactors in which adsorbent material is maintained in suspension in only one of the biological reactors;

FIG. 7 and FIG. 8 are embodiments of biological reactor systems depicting a jet suspension system for suspension of adsorbent material in mixed liquor;

FIGS. 9 and 10 are alternative embodiments of biological reactor systems depicting a jet suspension system for suspension of adsorbent material in mixed liquor, in which mixed liquor taken from a source that has had adsorbent material removed;

FIG. 11 is an alternative embodiment depicting a jet suspension system for suspension of adsorbent material in mixed liquor in which adsorbent material is not circulated through the jet nozzle;

FIG. 12 is a further embodiment of a biological reactor depicting a gas lift suspension system to provide circulation to maintain adsorbent material in suspension;

FIGS. 13A and 13B are further embodiments depicting a settling zone;

FIG. 14 is a chart depicting feed COD concentration (in milligrams per liter), and the remaining effluent COD concentrations (as percentages of the original), at various stages of biological acclimation in a membrane biological reactor system;

FIG. 15 is a schematic illustration of an embodiment of a jet nozzle of the type used in an example demonstrating use of a jet suspension system;

FIG. 16 is a schematic illustration of an system configuration used in another example herein;

FIG. 17 is a chart depicting suspension of adsorbent material under certain nozzle throat velocities and liquid flow rates as determined under various test conditions using the system configuration of FIG. 16;

FIGS. 18 and 19 depict top and sectional views of embodiments of biological reactors employed in the system configuration of FIG. 16;

FIG. 20 is a chart depicting attrition as a function of run time for various types of adsorbent material in another example herein using a gas lift suspension system;

FIG. 21 depicts a top and a sectional view of an embodiment of a biological reactor using a gas lift suspension system;

FIG. 22 is a schematic illustration of flow patterns using the gas lift suspension system of FIG. 21;

FIG. 23 depicts a top and a sectional view of an embodiment of a biological reactor using another configuration of a gas lift suspension systems; and

FIGS. 24 and 25 depict top, side sectional and end sectional views of embodiments of biological reactors using various configurations of gas lift suspension systems.

DETAILED DESCRIPTION

OF THE INVENTION

As used herein, “biologically refractory compounds” refer to those types of chemical oxygen demand (“COD”) compounds (organic and/or inorganic) in wastewater that are difficult to biologically break down when contacted with micro-organisms. The “biologically refractory compounds” can have varying degrees of refractory, ranging from those that are mildly refractory to those that are highly refractory.

“Biologically inhibitory compounds” refer to those compounds (organic and/or inorganic) in wastewater that inhibit the biological decomposition process.

“Biologically labile” means easy-to-digest, simple organics such as human and animal waste, food waste, and inorganics, such as ammonia and phosphorous-based compounds.

“COD” or “Chemical Oxygen Demand,” refers to a measure of the capacity of water to consume oxygen during a chemical reaction that results in the oxidation (decomposition) of organic matter and the oxidation of inorganic chemicals such as ammonia and nitrite. COD measurement includes biologically labile, biologically inhibitory and biologically refractory compounds.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Suspended media membrane biological reactor system and process including multiple biological reactor zones patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Suspended media membrane biological reactor system and process including multiple biological reactor zones or other areas of interest.
###


Previous Patent Application:
Multistage biological reactor
Next Patent Application:
Solvent removal
Industry Class:
Liquid purification or separation
Thank you for viewing the Suspended media membrane biological reactor system and process including multiple biological reactor zones patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.07507 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7786
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120279920 A1
Publish Date
11/08/2012
Document #
13378209
File Date
06/15/2010
USPTO Class
210631
Other USPTO Classes
210259, 210260, 210202, 210143, 210 962
International Class
02F9/14
Drawings
27



Follow us on Twitter
twitter icon@FreshPatents