FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 21 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Chemical mixing system and method

last patentdownload pdfdownload imgimage previewnext patent


20120279912 patent thumbnailZoom

Chemical mixing system and method


A chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture is described. The mixing apparatus includes at least one mixing station. The mixing station includes an injector assembly, where the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber. The apparatus also includes at least one super concentrate chemical component housed within a chemical container, where the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port, a receiving container fluidly connected to the injector assembly via a second tube, and a fluid source inlet introducing a fluid into the at least one mixing station, where the pressure within the at least one mixing station is less than 150 psi. The fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber, and the concentrated solution mixture is dispensed from the injector assembly into the receiving container.

Browse recent Dubois Chemicals, Inc. patents - ,
Inventors: Brent McCurdy, Michael Maurizi
USPTO Applicaton #: #20120279912 - Class: 210191 (USPTO) - 11/08/12 - Class 210 
Liquid Purification Or Separation > With External Supply Means For Regenerating Medium, E.g., Water Softening System >With Pump, Injector Or Siphon

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120279912, Chemical mixing system and method.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND OF THE INVENTION

Venturi injectors are commonly used to introduce a secondary fluid into a primary fluid stream. These injectors include an inlet for a primary fluid flow, a suction port introducing a second fluid flow into the primary fluid flow path, and an outlet for dispensing the combined primary and secondary fluids.

Systems for mixing chemical components using a venturi are well known in the art. For example, U.S. Pat. Nos. 5,439,020 and 5,678,593 describe detergent mixing systems for use with a highly pressurized water source. These systems include a mixing tank and several liquid chemical supply containers each accommodating a liquid chemical composition. A water supply conduit connects the pressurized water source with the mixing tank. Venturi chambers are disposed within the water supply conduit and are arranged for parallel flow. Each of the venturi chambers includes a suction port in fluid communication, respectively, with one of the liquid chemical supply containers so as to draw the liquid chemical from each chemical supply container as pressurized water passes through the venturi chamber, thus entraining the liquid chemical into the water.

In another example, U.S. Patent Application Publication No. 2009/0090415 describes an ultra-high pressure chemical delivery system sharing a common bulk fluid inlet and bulk fluid flow path to direct a bulk fluid through injectors. The system includes a manifold body having a bulk fluid inlet fluidly interconnected to a plurality of injector flow channels. Each injector flow channel includes a valve conduit and an injector conduit. The valve conduits include a valve mounting port and the injector conduits include an injector mounting port. The injector members each include a chemical inlet portion and a mixed fluid outlet portion, where the valve member selectively directs the bulk fluid through the injectors for drawing a chemical through the inlet portion for mixing with the bulk fluid and dispensing through to a point of use through the mixed fluid outlet portion. This system is specifically designed for use of extremely high water pressures upwards of 1000 psi.

In either case, the aforementioned systems are designed for creation of final use-level or application-level diluted solutions, that are no longer concentrated, such as dilutions of 1:20, 1:50, 1:100 or 1:500 (chemical to water). For creation of higher concentrated solution mixes (such as solutions having concentrations of greater than 1:5) from super concentrates, a highly controlled and delicate mixing environment is needed. Because the aforementioned systems require water under high pressure flows through the venturi chamber, these systems are not suitable for creation of higher concentrated solution mixes.

Further, these systems require a thorough understanding of the underlying mechanical functionality of multiple venturis operating in parallel or in series, and their effects on mixing, in order to operate the equipment effectively. Unfortunately, these systems do not provide a straight forward, ease-of-use platform and interface, as is highly desired by chemical mixing station operators.

Therefore, there is a need in the art for a system and method for creating concentrated chemical solution mixes from super concentrates, designed for simple operation by a user. The present invention satisfies this need.

SUMMARY

OF THE INVENTION

The present invention relates to a chemical component mixing apparatus for use with a fluid source in creation of a concentrated solution mixture. The mixing apparatus includes at least one mixing station. The mixing station includes an injector assembly, where the injector assembly includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber. The apparatus also includes at least one super concentrate chemical component housed within a chemical container, where the chemical container is fluidly connected by a first tube to the at least one venturi chamber via the at least one suction port, a receiving container fluidly connected to the injector assembly via a second tube, and a fluid source inlet introducing a fluid into the at least one mixing station, where the pressure within the at least one mixing station is less than 150 psi. The fluid passes through the at least one venturi chamber, thereby drawing the at least one super concentrate chemical component into the venturi chamber, and the concentrated solution mixture is dispensed from the injector assembly into the receiving container.

In one embodiment, the pressure within the at least one mixing station is between 10-50 psi. In another embodiment, the pressure within the at least one mixing station is between 15-40 psi. In another embodiment, the apparatus further includes a pump. In another embodiment, the apparatus further includes a water softener. In another embodiment, the injector assembly includes a multi-port injector. In another embodiment, the first tube is ½ inch tubing. In a further embodiment, the ½ inch tubing is connected to an adapter for releasably securing the ½ inch tubing to the at least one suction port of the at least one venturi chamber. In another embodiment, the ½ inch tubing contains a metering tip within the tubing for at least partially restricting flow of the chemical component housed in the chemical container into the injector assembly. In another embodiment, the at least one mixing station further includes a pressure regulator. In another embodiment, the at least one mixing station further includes a valve upstream of the pressure regulator. In another embodiment, the at least one mixing station further includes a float positioned at least partially within the receiving container. In another embodiment, the at least one mixing station further includes a circuitry hub electrically connecting the float to the valve. In another embodiment, the valve is a water solenoid valve. In another embodiment, the float signals the valve to cease flow of the fluid through the mixing station when the receiving container is filled with a predetermined amount of the concentrated solution mixture dispensed from the injector assembly. In another embodiment, the electrical connection of the float to the circuitry hub comprises an adapter cord. In another embodiment, the at least one mixing station is a plurality of mixing stations, and the adapter cord connects multiple circuitry hubs of the multiple mixing stations to a single float at least partially within a single receiving container. In another embodiment, the single float signals the valve of each of the multiple mixing stations to cease flow of the fluid through the mixing stations when the receiving container is filled with a predetermined amount of the concentrated solution mixture.

The present invention also relates to a method for mixing a concentrated chemical solution. The method comprises the steps of receiving a base fluid flow into a mixing station having an injector assembly that includes at least one venturi chamber having at least one suction port in fluid communication with the at least one venturi chamber, regulating the pressure of the base fluid flow to less than 150 psi, providing a source of at least one liquid chemical component in fluid communication with the injector assembly via a first tube, providing a receiving container for collection of the final concentrated chemical solution that is in fluid communication with the injector assembly via a second tube, mixing the at least one chemical component with the base fluid in the at least one venturi chamber to create the concentrated chemical solution, wherein flow of the base fluid through the at least one venturi chamber of the injector assembly draws the at least one liquid chemical component through the at least one suction port and into the flow of the base fluid, and dispensing the concentrated chemical solution into the receiving container.

The present invention also relates to an adapter for connecting a tube to a venturi-style injector. The adapter comprises a housing having a hollow interior, the housing comprising an inlet and an outlet to the hollow interior, a first attachment mechanism for attaching a tube to the inlet, and a second attachment mechanism for attaching the outlet to a suction port arm of a venturi-style injector, where the second attachment mechanism includes a notch pattern sized and shaped to receive a reciprocal knob pattern forming part of the arm of the injector when the adapter is pressed onto the injector arm, and wherein, upon passage of the knob pattern through the notch pattern, the adapter can be twisted, such that the notch patter rotates away from the knobs and releasably locks the adapter onto the injector.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, there are depicted in the drawings certain embodiments of the invention. However, the invention is not limited to the precise arrangements and instrumentalities of the embodiments depicted in the drawings.

FIG. 1 is a schematic back view of an exemplary chemical mixing apparatus in accordance with the present invention.

FIG. 2 is a schematic front view (or operating face) of the exemplary chemical mixing apparatus of FIG. 1, in accordance with the present invention.

FIG. 3 is a schematic of an exemplary injector assembly, including an injector, fitting and line adapter, in accordance with the present invention.

FIG. 4 is a schematic top view of an exemplary multi-arm injector assembly, in accordance with the present invention.

FIG. 5 is a perspective view illustrating an exemplary locking mechanism for attachment of the line adapter to the injector arm of the injector assembly, in accordance with the present invention.

FIG. 6 is a perspective view of the injector assembly of FIG. 5 in the locked position, in accordance with the present invention.

FIG. 7 is a cross-sectional view of the injector assembly of FIG. 5, illustrating directional flow through the venturi chamber and introduction of a second flow of a chemical component through the line adapter, injector arm and first flow within the venturi chamber.

FIG. 8 is a chart of the amount of water (grams) drawn through the venturi of a 0.083 injector at various pressures.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Chemical mixing system and method patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Chemical mixing system and method or other areas of interest.
###


Previous Patent Application:
Fluid filter assembly with sight glass
Next Patent Application:
System for removing chemicals from a working fluid, and methods related to the same
Industry Class:
Liquid purification or separation
Thank you for viewing the Chemical mixing system and method patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.59506 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry   -g2-0.2255
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120279912 A1
Publish Date
11/08/2012
Document #
13099086
File Date
05/02/2011
USPTO Class
210191
Other USPTO Classes
3661632, 3661522, 3661511, 3661526, 285361
International Class
/
Drawings
7



Follow us on Twitter
twitter icon@FreshPatents