FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2012: 2 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Percutaneous heart valve with inflatable support

last patentdownload pdfdownload imgimage previewnext patent


20120277855 patent thumbnailZoom

Percutaneous heart valve with inflatable support


An implantable prosthetic valve for a human heart is disclosed. The prosthetic valve has an inflatable tubular annular support structure and at least one moveable occluder that controls the flow of blood through the support structure. The support structure has a flow control valve configured for coupling to an inflation lumen for inflating the support structure with an inflation media. The flow control valve seals after decoupling from the inflation lumen and prevents the inflation media from escaping.

Browse recent Direct Flow Medical, Inc. patents - Santa Rosa, CA, US
Inventors: RANDALL T. LASHINSKI, GORDON B. BISHOP
USPTO Applicaton #: #20120277855 - Class: 623 218 (USPTO) - 11/01/12 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Heart Valve >Flexible Leaflet >Supported By Frame >Resilient Frame

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277855, Percutaneous heart valve with inflatable support.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/502,164, filed Jul. 13, 2009, which is a continuation of U.S. patent application Ser. No. 11/112,847, filed Apr. 22, 2005, now U.S. Pat. No. 7,641,686, which claims priority under 35 U.S.C. §119(e) to (1) U.S. Provisional Patent Application No. 60/564,708, filed Apr. 23, 2004, (2) U.S. Provisional Patent Application No. 60/568,402, filed May 5, 2004, (3) U.S. Provisional Patent Application No. 60/572,561, filed May 19, 2004, (4) U.S. Provisional Patent Application No. 60/581,664, filed Jun. 21, 2004, (5) U.S. Provisional Patent Application No. 60/586,054, filed Jul. 7, 2004, (6) U.S. Provisional Patent Application No. 60/586,110, filed Jul. 7, 2004, (7) U.S. Provisional Patent Application No. 60/586,005, filed Jul. 7, 2004, (8) U.S. Provisional Patent Application No. 60/586,002, filed Jul. 7, 2004, (9) U.S. Provisional Patent Application No. 60/586,055, filed Jul. 7, 2004, (10) U.S. Provisional Patent Application No. 60/586,006, filed Jul. 7, 2004, (11) U.S. Provisional Patent Application No. 60/588,106, filed Jul. 15, 2004, U.S. Provisional Patent Application No. 60/603,324, filed Aug. 20, 2004, (12) U.S. Provisional Patent Application No. 60/605,204, filed Aug. 27, 2004 and (13) U.S. Provisional Patent Application No. 60/610,269 filed Sep. 16, 2004, the entire contents of which are hereby expressly incorporated by reference herein.

BACKGROUND OF THE INVENTION

According to recent estimates, more than 79,000 patients are diagnosed with aortic and mitral valve disease in U.S. hospitals each year. More than 49,000 mitral valve or aortic valve replacement procedures are performed annually in the U.S., along with a significant number of heart valve repair procedures.

Although mitral valve repair and replacement can successfully treat many patients with mitral valvular insufficiency, techniques currently in use are attended by significant morbidity and mortality. Most valve repair and replacement procedures require a thoracotomy, usually in the form of a median sternotomy, to gain access into the patient\'s thoracic cavity. A saw or other cutting instrument is used to cut the sternum longitudinally, allowing the two opposing halves of the anterior or ventral portion of the rib cage to be spread apart. A large opening into the thoracic cavity is thus created, through which the surgical team may directly visualize and operate upon the heart and other thoracic contents. Alternatively, a thoracotomy may be performed on a lateral side of the chest, wherein a large incision is made generally parallel to the ribs, and the ribs are spread apart and/or removed in the region of the incision to create a large enough opening to facilitate the surgery.

Surgical intervention within the heart generally requires isolation of the heart and coronary blood vessels from the remainder of the arterial system, and arrest of cardiac function. Usually, the heart is isolated from the arterial system by introducing an external aortic cross-clamp through a sternotomy and applying it to the aorta to occlude the aortic lumen between the brachiocephalic artery and the coronary ostia. Cardioplegic fluid is then injected into the coronary arteries, either directly into the coronary ostia or through a puncture in the ascending aorta, to arrest cardiac function. The patient is placed on extracorporeal cardiopulmonary bypass to maintain peripheral circulation of oxygenated blood.

A need therefore remains for methods and devices for treating mitral valvular insufficiency, which are attended by significantly lower morbidity and mortality rates than are the current techniques, and therefore would be well suited to treat patients with dilated cardiomyopathy. Optimally, the procedure can be accomplished through a percutaneous, transluminal approach, using simple, implantable devices.

The circulatory system is a closed loop bed of arterial and venous vessels supplying oxygen and nutrients to the body extremities through capillary beds. The driver of the system is the heart providing correct pressures to the circulatory system and regulating flow volumes as the body demands. Deoxygenated blood enters heart first through the right atrium and is allowed to the right ventrical through the tricuspid valve. Once in the right ventrical, the heart delivers this blood through the pulmonary valve and to the lungs for a gaseous exchange of oxygen. The circulatory pressures carry this blood back to the heart via the pulmonary veins and into the left atrium. Filling of the left ventricle occurs as the mitral valve opens allowing blood to be drawn into the left ventrical for expulsion through the aortic valve and on to the body extremities. When the heart fails to continuously produce normal flow and pressures, a disease commonly referred to as heart failure occurs.

Heart failure simply defined is the inability for the heart to produce output sufficient to demand. Mechanical complications of heart failure include free-wall rupture, septal-rupture, papillary wall rupture or dysfunction aortic insufficiency and tamponade. Mitral, aortic or pulmonary valve disorders lead to a host of other conditions and complications exacerbating heart failure further. Other disorders include coronary disease, hypertension, and a diverse group of muscle diseases referred to as cardiomyopothies. Because of this syndrome establishes a number of cycles, heart failure begets more heart failure.

Heart failure as defined by the New York Heart Association in a functional classification.

Patients with cardiac disease but without resulting limitations of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea, or anginal pain.

Patient with cardiac disease resulting in slight limitation of physical activity. These patients are comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnea, or anginal pain.

Patients with cardiac disease resulting in marked limitation of physical activity. These patients are comfortable at rest. Less than ordinary physical activity causes fatigue palpitation, dyspnea, or anginal pain.

Patients with cardiac disease resulting in inability to carry on any physical activity without discomfort. Symptoms of cardiac insufficiency or of the anginal syndrome may be present even at rest. If any physical activity is undertaken, discomfort is increased.

Congestive heart failure is described as circulatory congestion including peripheral edema. The major factor in cardiac pulmonary edema is the pulmonary capillary pressure. There are no native valves between the lungs and the left atrium therefore fluctuations in left atrial pressure are reflected retrograde into the pulmonary vasculature. These elevations in pressure do cause pulmonary congestion. When the heart, specifically the mitral valve, is operating normally correct flow and pressures throughout the circulatory system are maintained. As heart failure begins these pressures and flow rates decrease or increase depending upon the disease and vascular location.

Placement of valves between the lung and the left atrium will prevent retrograde flow and undesired pressure fluctuations to the pulmonary vasculature. Mechanical valves may be constructed of conventional materials such as stainless steel, nickel-titanium, cobalt-chromium or other metallic based alloys. Other materials used are biocompatible-based polymers and may include polycarbonate, silicone, pebax, polyethylene, polypropylene or floropolymers such as Teflon. Mechanical valves may be coated or encapsulated with polymers for drug coating applications or favorable biocompatibility results.

There are many styles of mechanical valves that utilize both polymer and metallic materials. These include single leaflet, double leaflet, ball and cage style, slit-type and emulated polymer tricuspid valves. Though many forms of valves exist, the function of the valve is to control flow through a conduit or chamber. Each style will be best suited to the application or location in the body it was designed for.

Bioprosthetic heart valves comprise valve leaflets formed of flexible biological material. Bioprosthetic valve or components from human donors are referred to as homografts and xenografts are from non-human animal donors. These valves as a group are known as tissue valves. This tissue may include donor valve leaflets or other biological materials such as bovine pericardium. The leaflets are sewn into place and to each other to create a new valve structure. This structure may be attached to a second structure such as a stent or cage for implantation to the body conduit.

Description of the Related Art

The concept of placing a percutaneous valve in the pulmonary veins was first disclosed by Block et all in U.S. Pat. No. 5,554,185. A specific windsock valve for this application was later described by Shaknovich in U.S. Pat. No. 6,572,652.

SUMMARY

OF THE INVENTION

There is provided in accordance with one aspect of the present invention, a flow controlled device dimensioned for implantation in a human pulmonary vein. The device comprises an inflatable support structure in at least one movable occluder that controls the flow of blood into and out of the pulmonary veins. Implantation of the valve between the left atrium and the lung within the pulmonary vein reduces the likelihood and/or the severity of regurgitant flow increasing the pulmonary pressure which may lead to pulmonary edema and congestion.

In accordance with a further aspect of the present invention, a method of monitoring a patient comprises monitoring blood flow through the pulmonary veins during the implantation of the device of Claim 1. In accordance with a further aspect of the present invention, there is provided a method of monitoring blood pressure comprising monitoring blood pressure through the pulmonary veins during the implantation of the pulmonary vein valve.

In accordance with a further aspect of the present invention, there is provided a method of treating a patient comprising rerouting blood flow from the pulmonary veins into a prosthetic chamber, and then back into a portion of the heart. The prosthetic chamber may include at least one valve, and may serve as a manifold for combining the flow of the pulmonary veins into a single return conduit, which may be placed into communication with the left ventrical.

Further features and advantages of the present invention will become apparent to those of skill in the heart in view of the detailed description of preferred embodiments which follows, when considered together with the attached drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side elevational schematic view of an axially actuated deployment device in accordance with the present invention.

FIG. 2 is a side elevational schematic view of a rotationally actuated deployment device in accordance with the present invention.

FIG. 3 is a fragmentary cut-away view of a distal end of a deployment catheter having an implantable device therein.

FIG. 4 is a fragmentary view as in FIG. 3, having a different embodiment illustrated therein.

FIG. 5 is a simplified top view of a section through the heart, illustrating a first valve at a first location in a first pulmonary vein, and a second valve at a second location in a second pulmonary vein.

FIG. 6 is a schematic representation of a stent supported valve in a pulmonary vein.

FIG. 7 is a simplified back view of the heart, illustrating the location of the left superior pulmonary vein, left inferior pulmonary vein, right superior pulmonary vein and right inferior pulmonary vein.

FIG. 8 is a simplified view of the lungs and left atrium, illustrating the orientation of the pulmonary veins with respect to the lungs.

FIG. 9A is a perspective schematic view of a Starr-Edwards ball and cage valve.

FIG. 9B is a perspective schematic view of a single leaflet valve.

FIG. 9C is a schematic perspective view of a bi-leaflet valve.

FIG. 9D is a schematic perspective view of a Reed style or duckbill valve.

FIG. 9E is a schematic perspective view of a poly-leaflet valve.

FIG. 9F is a schematic perspective view of a tri-leaflet valve having an inflatable support structure.

FIG. 9G is a schematic perspective view of a tri-leaflet valve having an alternative inflatable support structure.

FIG. 9H is an elevational cross-sectional view through the valve of FIG. 9G.

FIG. 10 is a schematic representation of the heart and pulmonary venous circulation following redirection of the pulmonary venous flow into the left ventrical.

FIG. 11 is a cross-sectional view of a ball valve that can be used to control inflation of the inflatable support structure.

DETAILED DESCRIPTION

OF THE PREFERRED EMBODIMENT

Implantation of valves into the body has been accomplished by a surgical procedure or via percutaneous method such as a catheterization or delivery mechanism utilizing the vasculature pathways. Surgical implantation of valves to replace or repair existing valves structures include the four major heart valves (tricuspid, pulmonary, mitral, aortic) and some venous valves in the lower extremities for the treatment of chronic venous insufficiency. Implantation includes the sewing of a new valve to the existing tissue structure for securement. Access to these sites generally include a thoracotomy or a sternotomy for the patient and include a great deal of recovery time. An open-heart procedure can include placing the patient on heart bypass to continue blood flow to vital organs such as the brain during the surgery. The bypass pump will continue to oxygenate and pump blood to the body\'s extremities while the heart is stopped and the valve is replaced. The valve may replace in whole or repair defects in the patient\'s current native valve. The device may be implanted in a conduit or other structure such as the heart proper or supporting tissue surrounding the heart. Vessels entering or departing the heart have an attachment or connection interface where the two components join in transition. This transition may provide a secure tissue zone to attach a valve body to. Attachments methods may include suturing, hooks or barbs, interference mechanical methods or an adhesion median between the implant and tissue. Access to the implantation site may require opening the wall of the heart to access the vessel or heart tissue for attachment. It is also possible to implant the device directly into the vessel by slitting in the longitudinal direction or cutting circumferentially the vessel and suturing the vessel closed after insertion. This would provide a less invasive method to implant the device surgically.

Other methods include a catheterization of the body to access the implantation site. Access may be achieved under fluoroscopy visualization and via catheterization of the internal jugular or femoral vein continuing through the vena cava to the right atrium and utilizing a transeptal puncture enter the left atrium. Once into the left atrium conventional and new catheterization tools will help gain access to the pulmonary veins. Engagement of each of the pulmonary veins may require a unique guiding catheter to direct device or catheter placement. Monitoring of hemodynamic changes will be crucial before, during and after placement of the device. Pressure and flow measurements may be recorded in the pulmonary veins and left atrium. Right atrial pressures may be monitored separately but are equally important. Separate catheters to measure these values may be required.

Valve delivery may be achieved by a pushable deployment of a self expanding or shaped memory material device, balloon expansion of a plastically deformable material, rotational actuation of a mechanical screw, pulling or pushing force to retract or expose the device to the deployment site. To aid in positioning the device, radiopaque markers may be placed on the catheter or device to indicate relative position to known landmarks. After deployment of the devices the hemodynamic monitoring will allow the interventional cardiologist to confirm the function of the valves. It is possible to place and remove each valve independently as valves may not be required in all pulmonary veins.

Entry to the body with a catheter may include the internal jugular or femoral vein. This will allow the user to enter the right atrium either superior or inferiorly and complete a transeptal puncture for access into the left atrium. Another approach would be to enter the femoral, brachial or radial artery where the user could access the aortic valve entering the left ventrical. Advancing the device through the left ventrical and past the mitral valve the left atrium can be entered. Utilizing normal cath-lab tools such as guidewires and guide catheters the delivery system or catheter can be advanced to the deployment site. Guidewires may measure 0.010-0.035 inches in diameter and 120-350 centimeters in length. Slippery coatings may aid in the navigation to the implantation site due to the vast number of turns and the tortuerosity of the vasculature. A guide catheter may be used to provide a coaxial support system to advance the delivery catheter through. This guiding catheter may be about 60-180 cm in length and have an outer diameter of 0.040-0.250 inches. It would have a proximal and distal end with a connection hub at the proximal end and may have a radiopaque soft tip at the distal end. It may have a single or multilumen with a wall thickness of 0.005-0.050 inches and may include stiffening members or braid materials made from stainless steel, nickel-titanium or a polymeric strand. The catheter material may include extruded tubing with multiple durometer zones for transitions in stiffness and support. The inner diameter may have a Teflon lining for enhanced coaxial catheter movement by reducing the friction coefficient between the two materials.

As illustrated in FIG. 1, the delivery catheter 10 would be constructed by normal means in the industry utilizing extruded tubing, braiding for stiffening means and rotational torqueability. The delivery catheter 10 has a proximal end 12 and distal end 14 where the proximal end 12 may have a connection hub to mate other cath-lab tools to. The distal end 14 may have a radiopaque marker to locate under fluoroscopy. The outer diameter would measure about 0.030-0.200 inches and have a wall thickness from about 0.005-0.060 inches. The overall length would range from about 80-320 centimeters and have a connection hub or hubs at the proximal end 12 to allow wires, devices and fluid to pass. The connection hub would be compatible with normal cath-lab components and utilize a threaded end and a taper fit to maintain seal integrity. The inner diameter of the catheter 10 would allow for coaxial use to pass items such as guidewires, devices, contrast and other catheters. An inner lining material such as Teflon may be used to reduce friction and improve performance in tortuous curves. In addition a braided shaft of stainless steel or Nitinol imbedded into the catheter shaft 16 may improve the torqueability and aid in maintaining roundness of the catheter lumen.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Percutaneous heart valve with inflatable support patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Percutaneous heart valve with inflatable support or other areas of interest.
###


Previous Patent Application:
Implantable prosthetic valve
Next Patent Application:
Intraocular lens with fresnel prism
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Percutaneous heart valve with inflatable support patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.68162 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2856
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277855 A1
Publish Date
11/01/2012
Document #
13450356
File Date
04/18/2012
USPTO Class
623/218
Other USPTO Classes
International Class
61F2/24
Drawings
18



Follow us on Twitter
twitter icon@FreshPatents