FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Systems and methods for guiding catheters using registered images

last patentdownload pdfdownload imgimage previewnext patent


20120277574 patent thumbnailZoom

Systems and methods for guiding catheters using registered images


Systems and methods for imaging a body cavity and for guiding a treatment element within a body cavity are provided. A system may include an imaging subsystem having an imaging device and an image processor that gather image data for the body cavity. A mapping subsystem may be provided, including a mapping device and a map processor, to identify target sites within the body cavity, and provide location data for the sites. The system may also include a location processor coupled to a location element on a treatment device to track the location of the location element. The location of a treatment element is determined by reference to the location element. A treatment subsystem including a treatment device having a treatment element and a treatment delivery source may also be provided. A registration subsystem receives and registers data from the other subsystems, and displays the data.

Browse recent Boston Scientific Scimed, Inc. patents - Maple Grove, MN, US
Inventor: Dorin Panescu
USPTO Applicaton #: #20120277574 - Class: 600421 (USPTO) - 11/01/12 - Class 600 
Surgery > Diagnostic Testing >Detecting Nuclear, Electromagnetic, Or Ultrasonic Radiation >Magnetic Resonance Imaging Or Spectroscopy >Including Any System Component Contacting (internal Or External) Or Conforming To Body Or Body Part

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277574, Systems and methods for guiding catheters using registered images.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

The present application is a continuation-in-part of copending U.S. application Ser. No. 10/012,293.

FIELD OF THE INVENTION

The present inventions relate generally to systems and methods for guiding and locating diagnostic or therapeutic elements on medical instruments positioned in a body.

BACKGROUND

The use of invasive medical devices, such as catheters and laparoscopes in order to gain access into interior regions or volumes within the body for performing diagnostic and therapeutic procedures is well known. In such procedures, it is important for a physician or technician to be able to precisely position the device, including various functional elements located on the device, within the body in order to make contact with a desired body tissue location.

In order to accurately position the device, it is desirable that the shape or configuration of the particular volume be determined, and registered in a known three-dimensional coordinate system, as well as the location or locations of sites within the volume identified for treatment. Current techniques, however, are incapable of determining and registering the true shape and configuration, as well as the dynamic movement of a volume, or at the least at a resolution high enough to provide a physician a comfortable understanding of the volume. Many current techniques use fluoroscopy to generate an image of the target volume. These devices only provide two-dimensional information about the volume, however, rather than the more preferred three-dimensional information. The result is that physicians using fluoroscopy to obtain an image of the volume within which a medical device is guided must rely partly on their own general knowledge of anatomy to compensate for the two-dimensional image obtained by the fluoroscope. In addition, not only do these device not give the physician a three-dimensional view of the volume, but also do not give an understanding of possible obstacles or movements within the volume itself, such as the opening and closing of valves, atrio-septal defects, atrio-septal defect closure plugs, and the like.

Some technologies are capable of generating and registered three-dimensional images, but these devices are typically incapable of producing a high resolution image of the interior space of the volume, since they operate from outside of the body, or from a location outside of the target volume itself, in the case of transthoracic or transesophageal echography used to image the heart.

Therefore, it would be desirable to provide systems and methods for guiding a medical device that are able to generate higher resolution images of the target volume such that a physician is able to compensate for any obstructions or physical landmarks within the volume itself

SUMMARY

OF THE INVENTION

The present inventions relate generally to systems and methods for guiding and locating diagnostic or therapeutic elements on medical instruments positioned in a body by reconstructing a three-dimensional representation of a subject volume, displaying the representation with or without mapping data, and guiding a device, such as, e.g., a treatment device, by reference to the representation, the mapping data, if available, and the current position of the treatment device within the volume.

In accordance with a first aspect of the present inventions, a method of performing a procedure in a body cavity of a patient, such as a heart chamber, comprises generating three-dimensional image data of the body cavity, generating optional three-dimensional mapping data of the body cavity, registering the image and optional mapping data in a three-dimensional coordinate system, displaying a three-dimensional image of the body cavity based on the registered image data, and displaying an optional three-dimensional map of the body cavity based on the registered mapping data. The three-dimensional map is preferably superimposed over the three-dimensional image. In one procedure, the three-dimensional image data is generated from within the body cavity, and is also generated ultrasonically. Also, the three-dimensional image data preferably comprises a plurality of two-dimensional data slices. In various procedures, the three-dimensional image data or the three-dimensional mapping data, or both, is dynamically displayed. A functional element is moved within the body cavity by registering the movement of the functional element in the coordinate system, and displaying the movement by superimposing the element over the three-dimensional image and optional map. The treatment element is guided by reference to the display, and a target site is treated, such as by ablation, using the treatment element.

The image data can be registered in a variety of ways. For example, a position of a source of the image data within the three-dimensional coordinate system can be determined, and then the image data can be aligned so that the image data source is coincident with the determined position. Or fiducial points within the image data can be generated, positions of the fiducial points within the three-dimensional coordinate system can be determined, and then the image data can be aligned so that the fiducial points are coincident with the determined positions. Or a set of points can be generated, positions of the points within the three-dimensional coordinate system can be determined, and then the image data can be best fit to the set of points. Registration of the image data can even be accomplished at least partially with user intervention.

In a second aspect of the present invention, a method of performing a procedure within a body cavity, such as a heart chamber, comprises internally generating image data, generating mapping data, and registering and displaying the image and mapping data in a three-dimensional coordinate system. In one procedure, both the image and mapping data is three-dimensional. In another procedure, both the image and mapping data is four-dimensional. Preferably, the image data is generated ultrasonically, and comprises a plurality of two-dimensional data slices. A functional element or a treatment element is moved within the body cavity, the movement is registered in the three-dimensional coordinate system, and subsequently displayed. The functional or treatment element is then guided by reference to the display, and treatment is delivered to a target site, such as, by ablating the site.

In a third aspect of the present invention, a method of performing a procedure within a body cavity, such as a heart chamber, comprises internally generating image data and registering the data in a three-dimensional coordinate system. The image data is preferably three-dimensional. Also, the image data is preferably generated over time and dynamically displayed. In one procedure, the image data is generated ultrasonically, and is a plurality of two-dimensional slices. A functional element is moved within the body cavity, and the movement is registered in the coordinate system and displayed.

In a fourth aspect of the present invention, a method of performing a procedure within a body cavity, which may be a heart chamber, comprises introducing an imaging probe with an imaging element and a first location element into the body cavity, generating image data, introducing a mapping probe having one or more mapping elements and a second location element, generating mapping data, determining the locations of the location elements in a three-dimensional coordinate system, registering the image and mapping data in the three-dimensional coordinate system based on the locations of the location elements, and displaying the registered image and mapping data. The imaging element preferably includes an ultrasound transducer. The location elements may include an array of magnetic sensors, or an ultrasound transducer, which may be wired or wireless. Preferably, the first location element is adjacent the imaging element, and the second location element is adjacent the mapping elements. Additionally, a roving probe having a functional element, or a treatment probe having a treatment element, and a third location element is introduced into the body cavity, the location of the third location element in the coordinate system is determined, the location is registered and displayed, and the functional element, or treatment element, is navigated by reference to the display. In one embodiment, the functional element or treatment element is an ablation electrode.

In a fifth aspect of the present invention, a method of performing a procedure within a body cavity, such as a heart chamber, comprises introducing an imaging probe having an imaging element and a first location element in to the body cavity, generating image data, removing the imaging probe, introducing a mapping probe having one or more mapping elements and a second location element into the body cavity, generating mapping data, introducing a roving probe having a functional element and a third location element into the body cavity, determining the locations of the location elements in a three-dimensional coordinate system, registering and displaying the image data, mapping data, and locations of the functional element in the coordinate system based on the locations of the location elements, and navigating the treatment element by reference to the display while the imaging probe is removed from the body cavity. The mapping probe may or may not be removed prior to, or while the roving probe is being deployed or used. The roving probe or mapping probe may be introduced into the body cavity while the imaging probe is removed. The location elements may include an array of magnetic sensors, or an ultrasound transducer, which may be wired or wireless. Preferably, the first location clement is adjacent the imaging element, the second location element is adjacent the mapping elements, and the third location element is adjacent the functional element. The imaging element is preferably an ultrasound transducer. In one procedure, the roving probe is a treatment probe and the functional element is a treatment element. Here, the treatment element is guided to a target site by reference to the display, and the target site is treated with the treatment element. In one embodiment, the treatment element is an ablation electrode.

In a sixth aspect of the present invention, a system for treating a target site within a body cavity, which may be a heart chamber, comprises an imaging subsystem having an imaging device with an imaging element and image processing circuitry coupled to the imaging element, a mapping subsystem having a mapping device with one or more mapping elements coupled to map processing circuitry, a treatment delivery subsystem having a treatment device with a treatment element coupled to a treatment delivery source, and a three-dimensional coordinate registration subsystem comprising registration processing circuitry coupled to the image and map processing circuitry, three location elements respectively located on the imaging, mapping, and treatment devices, and location processing circuitry coupled between the location elements and the registration processor. In one embodiment, the three location elements are respectively located adjacent the imaging, mapping, and treatment elements. The registration processing circuitry and the location processing circuitry may be integrated into a single processor. Also, the registration, location, image, and mapping processing circuitry may all be embodied in a single processor. In one embodiment, the location elements comprise three orthogonal arrays of magnetic sensors. Here, the registration subsystem includes an antenna, a magnetic field generator coupled between the antenna and the location processing circuitry, and a magnetic field detector coupled between the location sensors and the location processing circuitry. In another embodiment, the location elements comprise an ultrasound transducer. With this embodiment, the location processing component includes ultrasound transducers, a first ultrasound transceiver coupled between the ultrasound transducers and the location processing circuitry, and a second ultrasound transceiver coupled between the ultrasound transducers and the location processing circuitry.

A display is preferably coupled to the registration subsystem. The imaging element may be an ultrasound transducer, and the imaging device may be an imaging catheter. In one embodiment, the treatment element is an ablation electrode, and the treatment delivery source comprises an ablation energy source.

In a seventh aspect of the present invention, a system for treating a target site within a body cavity, which may be a heart chamber, includes an imaging subsystem having an imaging catheter with an imaging element and image processing circuitry coupled to the imaging element, and a three-dimensional coordinate registration subsystem having registration processing circuitry coupled to the image processing circuitry, a location element on the imaging catheter, and location processing circuitry coupled between the location element and the registration processing circuitry. The system also includes a mapping subsystem having a mapping device with one or more mapping elements coupled to map processing circuitry. The registration processing circuitry is coupled to the map processing circuitry, and also includes another location element on the mapping device coupled to the location processing circuitry. The location element on the imaging catheter is preferably adjacent the imaging element. In one embodiment, the location element includes an orthogonal array of magnetic sensors, and the registration subsystem includes an antenna, a magnetic field generator coupled between the antenna and the location processing circuitry, and a magnetic field detector coupled between the magnetic sensors and the location processing circuitry. In another embodiment, the location element includes an ultrasound transducer, and the registration subsystem includes one or more ultrasound transducers, a first ultrasound transceiver coupled between the one or more ultrasound transducers and the location processing circuitry, and a second ultrasound transceiver coupled between the ultrasound transducer and the location processing circuitry.

In one embodiment, the imaging element comprises an ultrasound transducer, and the imaging catheter is coupled to a pullback device. In one embodiment, the registration processing circuitry and the location processing circuitry are integrated into a single processor. A display is included that is coupled to the registration subsystem.

In an eighth aspect of the present inventions, a system for treating a target site within a body cavity, which may be a heart chamber, includes an imaging subsystem comprising an imaging device configured for generating image data of the body cavity, a probe configured to be moved within the body cavity, and a three-dimensional coordinate registration subsystem configured for registering the image data and the location of the probe within a three-dimensional coordinate system. The probe may be, e.g., a treatment device having a treatment element, in which case, the system may further comprise a treatment delivery subsystem comprising the treatment device and a treatment delivery source coupled to the treatment element. Or the probe may be, e.g., a mapping device configured for generating mapping data, in which case, the system may comprise a mapping subsystem comprising the mapping device, wherein the registration subsystem is further configured for registering the mapping data within the three-dimensional coordinate system. The system may further comprise a display coupled to the registration subsystem. The imaging device can take various forms. For example, the imaging device can be an internal imaging device, e.g., a real time 3-D imaging catheter, or an external imaging device, e.g., a computerized axial tomography device or magnetic resonance imaging device. The registration subsystem can register the image data within the three-dimensional coordinate system in a variety of ways, including using the registration steps described above.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to better appreciate how the above-recited and other advantages and objects of the present inventions are obtained, a more particular description of the present inventions briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 is a block diagram of one preferred embodiment of a treatment system constructed in accordance with the present inventions;

FIG. 2 is a block diagram of an imaging subsystem used in the treatment system of FIG. 1;

FIG. 3 is a block diagram of a mapping subsystem used in the treatment system of FIG. 1;

FIG. 4a is a block diagram of a treatment delivery subsystem used in the treatment system of FIG. 1;

FIG. 4b is an isometric view of the treatment delivery subsystem of FIG. 4a;

FIG. 5 is a block diagram of a magnetic locating portion of a registration subsystem used in the treatment system of FIG. 1;

FIG. 6 is a block diagram of an ultrasonic locating portion of a registration subsystem used in the treatment system of FIG. 1;

FIG. 7a is a schematic diagram showing the operation of the imaging subsystem and the FIG. 5 registration subsystem within the heart of a patient;

FIG. 7b is a schematic diagram showing the operation of the imaging subsystem and the FIG. 6 registration subsystem within the heart of a patient;

FIG. 8a is a schematic diagram showing the operation of the mapping subsystem and the FIG. 5 registration subsystem within the heart of a patient;

FIG. 8b is a schematic diagram showing the operation of the mapping subsystem and the FIG. 6 registration subsystem within the heart of a patient;

FIG. 9a is a schematic diagram showing the operation of the treatment delivery subsystem and the FIG. 5 registration subsystem within the heart of a patient;

FIG. 9b is a schematic diagram showing the operation of the treatment delivery subsystem and the FIG. 6 registration subsystem within the heart of a patient;

FIG. 10 is an illustration of a reconstructed three-dimensional image having superimposed thereon three-dimensional mapping data; and

FIG. 11 is an illustration of a reconstructed three-dimensional image along with three-dimensional mapping data wherein the mapping data is presented in varying colors; and

FIG. 12 is a block diagram of another preferred embodiment of a treatment system constructed in accordance with the present inventions.

DETAILED DESCRIPTION

The present invention provides a system for generating a three-dimensional image of a volume, registering that image in a three-dimensional coordinate system, generating mapping data of the volume, registering the positional data to the three-dimensional coordinate system, and guiding a treatment device to a target site identified by the positional data. The system is particularly suited for reconstructing and mapping a volume within a heart, and for ablating heart tissue. Nevertheless, it should be appreciated that the invention is applicable for use in other applications. For example, the various aspects of the invention have application in procedures for ablating or otherwise treating tissue in the prostate, brain, gall bladder, uterus, esophagus and other regions of the body. Additionally, it should be appreciated that the invention is applicable for use in drug therapy applications where a therapeutic agent is delivered to a targeted tissue region. One preferred embodiment of a treatment system 100, shown in FIG. 1, generally includes a registration subsystem 102, an imaging subsystem 120, a mapping subsystem 140, a treatment delivery subsystem 160, memory 104, and a display 106.

The imaging subsystem 120 includes an imaging device or device 122 with a distally located imaging element 124, and an image processor 126 coupled to the imaging element 124.. The embodiment of the imaging subsystem 120 shown in FIG. 1 uses a pullback approach and, therefore, further includes a drive unit 127. As will be described in further detail below, the image processing subsystem 120 gathers data regarding the subject volume that is detected by the imaging device 122, and processed by the image processor 126, and relays that data to the registration subsystem 102, and specifically a registration processor 110. The registration processor 110, with the assistance of a location processor 108 and a location element 128 associated with the imaging element 124, registers the image data in a three-dimensional coordinate system, stores the registered image data in memory 104, and subsequently displays the registered image data on display 106 as a reconstructed three-dimensional image.

The mapping subsystem 140 includes a mapping device 142 with distally located mapping elements 144, and a map processor 146 coupled to the mapping elements 144. Reference herein will be made to a mapping catheter 142 and mapping device 142 interchangeably, but it will be appreciated that the mapping device 142 is not limited to catheters. The mapping subsystem 140 gathers positional data within the subject volume that correspond to specific target sites identified for treatment, using data gathered by the mapping catheter 142 and processed by the map processor 146, and provides the mapping data to the registration processor 110 of the registration subsystem 102. The registration processor 110, with the assistance of the location processor 108 and a location element 148 associated with the mapping elements 144, registers the mapping data in a three-dimensional coordinate system, stores the registered target side data in memory 104, and subsequently displays the registered mapping data, along with the registered image data, on display 106. The treatment delivery subsystem 160 has a treatment device 162 with a distally located treatment element 164, and a treatment delivery source 166 coupled to the treatment element 164. The treatment device 162, as shown, is a deployable, invasive treatment device 162, such as an ablation catheter, but the treatment device 162 may be any other catheter, surgical device, diagnostic device, measuring instrument, or laparoscopic probe, and is not limited to any particular type of invasive device. The treatment delivery source 166 is an ablation power source when the treatment device 162 is an ablation catheter. In this case, the treatment element 164 is an ablation electrode. The registration processor 110, with the assistance of the location processor 108 and a location element 168 associated with the treatment element 164, registers the location of the treatment element 164 in a three-dimensional coordinate system, and subsequently displays location of the treatment element 164, along with the registered image data and mapping data, on display 106.

In one embodiment, the registration processor 110 and the location processor 108 are incorporated into a single processor. In another embodiment, the registration processor 110, the location processor 108, the image processor 126, and the map processor 146 are all incorporated into a single processor.

The various components of the system 100 will now be discussed in greater detail.

1. Imaging Subsystem

The imaging subsystem 120 of the system 100 is used to generate a representation, preferably a three-dimensional representation or image, of the subject volume. One embodiment of the imaging subsystem 120 of the present invention utilizes ultrasound to generate an image of the subject volume. As illustrated in FIG. 2, this embodiment of the imaging subsystem 120 includes the imaging device 122, which is used for gathering images from inside the body. In the illustrated embodiment, the imaging device 122 is an intracardiac device. As illustrated in FIG. 2, the imaging device 122 is a telescoping catheter that generally includes a hollow, outer sheath 21 and a hollow, inner shaft 23. Alternatively, the outer sheath 21 can be a stand-alone element that does not form a part of the imaging catheter 122. A rotatable drive cable 22 extends through the outer sheath 21 and has an imaging element 124 mounted at its distal end. Here, the imaging element 124 is an ultrasonic transducer. For purposes of describing this embodiment of the imaging subsystem, the imaging element 124 will also be referred to as an ultrasonic transducer 124. The transducer 124 preferably includes one or more piezoelectric crystals formed of, for example, barium titillate or cinnabar. Other types of ultrasonic crystal oscillators can also be used. For example, organic electrets such as polyvinylidene difluoride and vinylidene fluoride-trifluoro-ethylene copolymers can also, be used in the ultrasonic transducer 124. The reduced diameter, inner catheter shaft 23 extends through the outer sheath 21, and is attached to the drive unit 127. The drive cable 22 extends through the inner shaft 23 and is engaged to a motor drive shaft (not shown) within the drive unit 127. Exemplary preferred imaging device constructions usable with the present invention may be found in U.S. Pat. No. 5,000,185, U.S. Pat. No. 5,115,814, U.S. Pat. No. 5,464,016, U.S. Pat. No. 5,421,338, U.S. Pat. No. 5,314,408, and U.S. Pat. No. 4,951,677, each of which is expressly and fully incorporated herein by reference.

As illustrated in FIG. 2, the image subsystem 120 implements a pullback approach using the drive unit 127 to longitudinally translate, the inner shaft 23, and thus, the drive cable 22 and associated imaging element 124 (and specifically, an ultrasound transducer), in relation to the outer sheath 21. The drive unit 127 also rotates the ultrasound transducer 124′ (e.g., at thirty or sixty revolutions a minute), such that the imaging device 122 is able to retrieve image data representing two-dimensional slices of the subject volume. An exemplary preferred drive unit, and methods for using the drive unit, is disclosed in U.S. Pat. No. 6,292,681, which is fully and expressly incorporated herein by reference.

The image processor 126 generally comprises a processor unit 125, a transmitter 121, and a receiver 123. The processor unit 125 activates the transmitter 121 such that the transmitter 121 generates voltage pulses, which may be in the range of 10 to 150 volts, for excitation of the transducer 124. The voltage pulses cause the transducer 124 to project ultrasonic waves into the subject volume. As discussed, the illustrated imaging subsystem 120 is operated using a pullback method. Therefore, the drive unit 127 rotates the transducer 124 and pulls back the transducer 124 proximally towards the drive unit 127 as the transducer is projecting ultrasonic waves into the volume. As a result, the imaging subsystem 120 is able to gather two-dimensional slices of image data for the volume. In a preferred embodiment, the gathering of the two-dimensional slices of image data is gated, e.g., the gathering of image slices is timed relative to cardiac activity or to respiration, and each slice is gathered at substantially the same point in the heart or the respiration cycles. The two-dimensional slices are ultimately aggregated to form a reconstructed, three-dimensional image of the volume. In another embodiment, slices of image data are gathered in sets of slices, such as, sets of thirty or sixty slices. With this embodiment, corresponding slices in each set are matched together in order to form a reconstructed, four-dimensional image of the volume (i.e., a dynamic three-dimensional image that moves over time, e.g., for showing the beating of the heart). For example, the first slices of each set are grouped and displayed together, the second slices of each set are grouped and displayed together, and so on. Tissue, including tissue forming anatomic structures, such as heart, and internal tissue structures and deposits or lesions on the tissue, will scatter the ultrasonic waves projected by the transducer 124. The scattered ultrasonic waves return to the transducer 124. The transducer 124 converts the scattered ultrasonic waves into electrical signals and relays the signals to the receiver 123. The receiver 123 amplifies the electrical signals and subsequently relays the amplified signals to the processor unit 125.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Systems and methods for guiding catheters using registered images patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Systems and methods for guiding catheters using registered images or other areas of interest.
###


Previous Patent Application:
Ultrasound-activated nanoparticles as imaging agents and drug delivery vehicles
Next Patent Application:
Coil system and method for obtaining volumetric physiological measurements
Industry Class:
Surgery
Thank you for viewing the Systems and methods for guiding catheters using registered images patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.60122 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2179
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277574 A1
Publish Date
11/01/2012
Document #
13461589
File Date
05/01/2012
USPTO Class
600421
Other USPTO Classes
600424
International Class
/
Drawings
15



Follow us on Twitter
twitter icon@FreshPatents