FreshPatents.com Logo
stats FreshPatents Stats
4 views for this patent on FreshPatents.com
2012: 4 views
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

compounds for treating cancer and other diseases

last patentdownload pdfdownload imgimage previewnext patent

20120277308 patent thumbnailZoom

compounds for treating cancer and other diseases


This invention provides a method of synthesizing new active compounds for pharmaceutical uses including cancer treatment, wherein the cancers comprise breast, leukocytic, liver, ovarian, bladder, prostatic, skin, bone, brain, leukemia, lung, colon, CNS, melanoma, renal, cervical, esophageal, testicular, spleenic, kidney, lymphatic, pancreatic, stomach and thyroid cancers. This invention is an anti adhesion therapy which uses the compound as a mediator or inhibitor of adhesion proteins and angiopoietins. It inhibits excess adhesion and inhibits cell attachment. It modulates angiogenesis. The compounds also use as mediator of cell adhesion receptor, cell circulating, cell moving and inflammatory diseases.
Related Terms: Thyroid

Browse recent Pacific Arrow Limited patents - Hong Kong, CN
Inventors: Pui-Kwong Chan, May Sung Mak
USPTO Applicaton #: #20120277308 - Class: 514533 (USPTO) - 11/01/12 - Class 514 
Drug, Bio-affecting And Body Treating Compositions > Designated Organic Active Ingredient Containing (doai) >(o=)n(=o)-o-c Containing (e.g., Nitrate Ester, Etc.) >Cyano Or Isocyano Bonded Directly To Carbon >Z-c(=o)-o-y, Wherein Z Contains A Benzene Ring >Compound Contains Two Or More C(=o)o Groups Indirectly Bonded Together By Only Conalent Bonds



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277308, compounds for treating cancer and other diseases.

last patentpdficondownload pdfimage previewnext patent

This application claims priority of International App'l No. PCT/US2010/0042240, filed Jul. 16, 2010 and U.S. Ser. No. 12/856,322, filed Aug. 13, 2010. This application also claims priority of U.S. Ser. No. 12/541,713, filed Aug. 14, 2009 and claims benefit of U.S. Ser. No. 61/226,043, filed Jul. 16, 2009. This application claims priority of International App'l No. PCT/US09/34115, filed Feb. 13, 2009, This application claims benefit of U.S. Ser. No. 61/038,277 filed Mar. 20, 2008, U.S. Ser. No. 61/054,308, filed May 19, 2008, and claims priority of International App'l No. PCT/US2008/002086, filed Feb. 15, 2008, International App'l No. PCT/US2007/077273, filed Aug. 30, 2007, U.S. Ser. No. 60/890,380, filed on Feb. 16, 2007, U.S. No. 60/947,705, filed on Jul. 3, 2007, and U.S. Ser. No. 11/683,198, filed on Mar. 7, 2007, which claims benefit of U.S. Ser. Nos. 60/795,417, filed on Apr. 27, 2006, 60/841,727, filed on Sep. 1, 2006, 60/890,380, filed on Feb. 16, 2007, and International Application No. PCT/US2006/016158, filed Apr. 27, 2006, which claims the benefit of the priority of the following applications: (1) U.S. Ser. Nos. 11/289,142, filed Nov. 28, 2005, and 11/267,523, filed Nov. 4, 2005; (2) International Application No. PCT/US05/31900, filed Sep. 7, 2005 (which claims the priority of U.S. Ser. Nos. 60/617,379, filed Oct. 8, 2004, 60/613,811, filed Sep. 27, 2004, and 60/607,858, filed Sep. 7, 2004); (3) U.S. Ser. No. 11/131,551, filed May 17, 2005; and (4) U.S. Ser. No. 11/117,760, filed Apr. 27, 2005. This application also claims priority of U.S. Ser. No. 11/412,659, filed Apr. 27, 2006, U.S. Ser. No. 10/906,303, filed Feb. 14, 2005, and U.S. Ser. No. 12/344,682, filed Dec. 29, 2008. The contents of these preceding applications are hereby incorporated in their entireties by reference into this application.

FIELD OF THE INVENTION

This invention provides compounds, compositions, extracts and methods for inhibiting cancer invasion, cell invasion, or cancer cell invasion.

BACKGROUND OF THE INVENTION

This invention provides methods of synthesing new compounds for pharmaceutical uses. This invention provides methods, compounds and compositions for treating cancer, inhibiting cancer invasion, cell invasion, or cancer cell invasion, wherein the cancers comprise breast, leukocytic, liver, ovarian, bladder, prostatic, skin, bone, brain, leukemia, lung, colon, CNS, melanoma, renal, cervical, esophageal, testicular, spleenic, kidney, lymphatic, pancreatic, stomach and thyroid cancers

SUMMARY

OF THE INVENTION

This invention provides methods of synthesizing new compounds for pharmaceutical uses. This invention provides compounds, compositions, and methods for treating cancer, inhibiting cancer invasion, cell invasion, cancer cell invasion, and metastasis. This invention provides a use of compounds, compositions, for manufacturing medicament for treating cancer, inhibiting cancer invasion, and metastasis. This invention provides compounds for use as mediator or inhibitor of adhesion protein or angiopoietin, This invention provides compounds for use in a method of modulating attachment or adhesion of cells or angiogenesis, by modulating or inhibiting adhesion protein or angiopoietin, The compounds comprise the structures selected from the formulae in the present application, wherein the compounds are synthesized or isolated, wherein the compounds comprise the saponins, triterpenes, pentacyclic triterpenes, and compounds selected from formulae in the present application, wherein the cancers comprise breast, leukocytic, liver, ovarian, bladder, prostatic, skin, bone, brain, leukemia, lung, colon, CNS, melanoma, renal, cervical, esophageal, testicular, spleenic, kidney, lymphatic, pancreatic, stomach and thyroid cancers. This invention provides compounds for use as a mediator for cell circulating, cell moving and inflammatory diseases.

DETAILED DESCRIPTION

OF THE FIGURES

FIG. 1 HPLC profiles of esterification products of E4A with Tigloyl chloride (A) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, 5 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature (Top row) and 0 C (bottom row).

FIG. 2 HPLC profiles of esterification products of E4A with 3,3-dimethylacryloly chloride (B) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, 5 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature (Top row) and 0 C (bottom row).

FIG. 3 HPLC profiles of esterification products of E4A with 4-Pentenoyl chloride (C) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, 5 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature.

FIG. 4 HPLC profiles of esterification products of E4A with Hexanoly chloride (D) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at 0C. (Top row); and shows the results of HPLC profiles of esterification products of E4A with 2-ethylbutyryl chloride (E) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at 0C.(bottom row)

FIG. 5 HPLC profiles of esterification products of E4A with Acetyl chloride (H) from different times of esterification reaction. Reaction products obtained from each time of reaction (1 min, 2 min, 5 min and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature.

FIG. 6 HPLC profiles of esterification products of E4A with Crotonoyl chloride (I) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, 5 min and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature.

FIG. 7 HPLC profiles of esterification products of E4A with Cinnamoyl chloride (J) from different times of esterification reaction. Reaction products obtained from each time of reaction (1 min, 1 hour, 2 hours, 18 hours, 18 hours(heat)) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at Room temperature and 75C.

FIG. 8 HPLC profiles of esterification products of E4A with Benzoyl chloride (K) from different times of esterification reaction. Reaction products obtained from each time of reaction (5 sec, 1 min, 2 min, 5 min, and 10 min) were fractionated by HPLC. The profile is plotted according to HPLC elution time and optical density of fractions. Reaction was performed at 0C.

FIG. 9 MTT cytotoxic activity of times study at room temperature for A: E4A-Tigloyl; B: E4A-3,3-dimethylacryloly; C: E4A-4-pentenoyl.

FIG. 10 MTT cytotoxic activity of times study at 0C for A: E4A-Tigloyl; B: E4A-3,3-dimethylacryloly; C: E4A-4-pentenoyl.

FIG. 11 MTT cytotoxic activity of times study for J: E4A-cinnamoyl; D: E4A-hexanoyl; E: E4A-2-ethylbutyryl; and controls: Tig control is tigloyl chloride without E4A; AC control is acetyl chloride without E4A; H is acetyl chloride with E4A reaction 1 min.

FIG. 12 MTT cytotoxic activity of times study for H: E4A-acetyl; I: E4A-crotonoyl

FIG. 13 MTT cytotoxic activity of times study for E4A-Tig in 1 min, 15 min, 30 min, 1 hour, 2 hours

FIG. 14 HPLC profiles of E4A-Tig in 1 min and 2 hours

FIG. 15 MTT cytotoxic activity of times study for E4A-Tig. Results: E4A-Tigs from reaction of 5 sec to 1 min are most active. Activity decrease after 1 min of reaction. Minimum to no activity was obtained at 10 minutes or longer.

FIG. 16 Results of HPLC profiles of E4A-Tigs: E4A, E4A-ASAP (5 sec), E4A-1 min, E4A-2 min, E4A-5 min, E4A-10 min, E4A-30 min.

FIG. 17 Results of Activity order: M, N, O, P, Q, R, S, T, E4A; M=E4A has no activity.

FIG. 18 Results of MTT cytotoxic activity of E4A-Tig-R in Cancer cells of different organs: A, Bone (U2OS) IC50=4.5 ug/ml; B, Bladder (TB9): IC50=2.5 ug/ml; C, Lung (H460): IC50=4.8 ug/ml; D, Ovary (ES2): IC50=2.8 ug/ml

FIG. 19 Results of MTT cytotoxic activity of E4A-Tig-R in Cancer cells of different organs: E, Colon (HCT116) IC50=5.2 ug/ml; F, Pancreas (Capan) IC50=2.4 ug/ml; G, Ovary (OVCAR3) IC50=5.8 ug/ml; H, Breast (MCF-7) IC50=4.5 ug/ml

FIG. 20 Results of MTT cytotoxic activity of E4A-Tig-R in Cancer cells of different organs: I, Prostate (DU145) IC50=3.6 ug/ml; J, Skin (SK-Mel-5) IC 50=5.1 ug/ml; K, Mouth (KB) IC 50=3 ug/ml; L, Kidney (A498) IC 50=3.5 ug/ml

FIG. 21 Results of MTT cytotoxic activity of E4A-Tig-R in Cancer cells of different organs: M, Liver (HepG2) IC50=6 ug/ml; N, Brain (T98G) IC50=8 ug/ml; P, Leukemia (K562) IC 50=2 ug/ml; Q, Cervix (HeLa) IC 50=5 ug/ml

FIG. 22 (A) Results: Tig-N, -Q, -R, -T -S and -V do not have hemolytic activity up to 20 ug/ml. The original compound ES lyse 100% red blood cells (RBC) at 5 ug/ml. (B) Results: compare to Y3, the ACH-Y3 is less potent in hemolytic activity. Tig-R has no hemolytic activity

FIG. 23 (A) Results of HPLC profiles of reaction products. Multiple fractions were obtained. Individual fractions were collected for further studies. (B) Results of purification of E4A-Tig-R.

FIG. 24 Results of MTT assay of E4A-Tig-R with bone U2OS cell

FIG. 25 Results of HNMR of E4A-Tig-R.

FIG. 26 Results of CNMR of E4A-Tig-R.

FIG. 27 Results of HMQC of E4A-Tig-R.

FIG. 28 Results of HMBC of E4A-Tig-R.

FIG. 29 The Mass spectrum of Tig-R (M+H) is 671.4509. The mass is consistent with the proposed structure FIG. 30 The Chemical Structure of E4A-Tig-R, 24,28-O-Tigloyl-3β,16α,21β,22α,24 β,28-hexahydroxyolean-12-ene, Formular:C40H62O8, FW: 670.91548

FIG. 30 The Chemical Structure of E4A-Tig-R, 24,28-O-Tigloyl-3β,16β,21β,22α,24 β,28-hexahydroxyolean-12-ene, Formular:C40H62O8, FW: 670.91548

FIG. 31 (A) Results of HPLC profiles of reaction products. Multiple fractions were obtained. Individual fractions were collected for further studies.

(B) Results of purification of E4A-Tig-N. (C) Results of purification of E4A-Tig-S; (D) Results of purification of E4A-Tig-T.

FIG. 32 (A) Results of MTT assay of E4A-Tig-N with bone U2OS cell; (B) Results of MTT assay of E4A-Tig-S with bone U2OS cell

FIG. 33 (A) Results of MTT assay of E4A-Tig-T with bone U2OS cell; (B)shows the results of MTT assay of E4A-Tig-V with bone Ovary ES2 cell. IC50=2 ug/ml; (C) shows the results of purification of E4A-Tig-V.

FIG. 34 Results of HNMR of E4A-Tig-V.

FIG. 35 Results of HMQC of E4A-Tig-V.

FIG. 36 Results of HMBC of E4A-Tig-V.

FIG. 37 Results of Mass Spectrum of E4A-Tig-V. The Tig-R (M+H) mass is 753.4924 which is consistent with the proposed formula (C45H68O9).

DETAILED DESCRIPTION

OF THE INVENTION

This invention provides a method of synthesising new active compounds for pharmaceutical uses. This invention provides an anti adhesion therapy which uses the compound as a mediator or inhibitor of adhesion proteins and angiopoietins. It inhibits excess adhesion and inhibits cell attachment. It modulates angiogenesis. The compounds also use as mediator of cell adhesion receptor.

This invention provides compounds or a composition comprising the compounds provided in the invention for treating cancers; for inhibiting cancer growth, for inhibiting viruses; for preventing cerebral aging; for improving memory; improving cerebral functions; for curing enuresis, frequent micturition, urinary incontinence; dementia, Alzheimer's disease, autism, brain trauma, Parkinson's disease or other diseases caused by cerebral dysfunctions; for treating arthritis, rheumatism, poor circulation, arteriosclerosis, Raynaud's syndrome, angina pectoris, cardiac disorder, coronary heart disease, headache, dizziness, kidney disorder; cerebrovascular diseasea; inhibiting NF-Kappa B activation; for treating brain edema, severe acute respiratory syndrome, respiratory viral diseases, chronic venous insufficiency, hypertension, chronic venous disease, oedema, inflammation, hemonhoids, peripheral edema formation, varicose vein disease, flu, post traumatic edema and postoperative swelling; for inhibiting blood clots, for inhibiting ethanol absorption; for lowering blood sugar; for regulating adrenocorticotropin and corticosterone levels. This invention provides a composition for AntiMS, antianeurysm, antiasthmatic, anti-oedematous, anti-inflammatory, antibradykinic, anticapillarihemorrhagic, anticephalagic, anticervicobrachialgic, antieclamptic, antiedemic, antiencaphalitic, antiepiglottitic, antiexudative, antiflu, antifracture, antigingivitic, antihematomic, antiherpetic, antihistaminic, antihydrathritic, antimeningitic, antioxidant, antiperiodontic, antiphlebitic, antipleuritic, antiraucedo, antirhinitic, antitonsilitic, antiulcer, antivaricose, antivertiginous, cancerostatic, corticosterogenic, diuretic, fungicide, hemolytic, hyaluronidase inhibitor, lymphagogue, natriuretic, pesticide, pituitary stimulant, thymolytic, vasoprotective, inhibiting leishmaniases, modulating adhesion or angiogenesis of cancer cells, antiparasitic; increase the expression of the genes: ANGPT2, DDIT3, LIF and NFKB1Z, and manufacturing an adjuvant composition and venotonic treatment.

This invention provides compounds, compositions and methods for treating cancer diseases, inhibiting cancer invasion, for inhibiting cancer growth or for inhibiting cancer metastasis, wherein the compounds comprise the structures selected from the formulae of the present application, wherein the compounds can be synthesized or isolated, wherein the compounds comprise the triterpenes, pentacyclic triterpenes, saponins, and compounds selected from formulae in this application, wherein the cancers comprise breast cancer, leukocytic cancer, liver cancer, ovarian cancer, bladder cancer, prostatic cancer, skin cancer, bone cancer, brain cancer, leukemia cancer, lung cancer, colon cancer, CNS cancer, melanoma cancer, renal cancer, cervical cancer, esophageal cancer, testicular cancer, spleenic cancer, kidney cancer, lymphhatic cancer, pancreatic cancer, stomach cancer and thyroid cancer; wherein the cells comprise breast cell, leukocytic cell, liver cell, ovarian cell, bladder cell, prostatic cell, skin cell, bone cell, brain cell, leukemia cell, lung cell, colon cell, CNS cell, melanoma cell, renal cell, cervical cell, esophageal cell, testicular cell, spleenic cell, kidney cell, lymphhatic cell, pancreatic cell, stomach cell and thyroid cell.

This invention shows that the presence of Tigloyl, angeloyl, Acetyl, Crotonoyl, 3,3-Dimethylartyloyl, senecioyl, Cinnamoyl, Pentenoyl, Hexanoyl, benzoyl, Ethylbutyryl, dibenzoyl, alkanoyl, alkenoyl, benzoyl alkyl substituted alkanoyl, alkanoyl substituted phenyl, alkenoyl substituted phenyl, aryl, acyl, heterocylic, heteroraryl, sugar moiety, or sugar moiety substituted with diangeloyl groups, at a pentacyclic triterpene, triterpene, triterpeniod, triterpeniod saponin or compound selected from formulae of the present application, produces inhbition of cancer growth, cancer invasion, cells invasion, cancer cell invasion, cell adhesion, cell circulation or cell attachment.

This invention shows that the presence of Tigloyl, angeloyl, Acetyl, Crotonoyl, 3,3-Dimethylartyloyl, senecioyl, Cinnamoyl, Pentenoyl, Hexanoyl, benzoyl, Ethylbutyryl, dibenzoyl, alkanoyl, alkenoyl, benzoyl alkyl substituted alkanoyl, alkanoyl substituted phenyl, alkenoyl substituted phenyl, aryl, acyl, heterocylic, heteroraryl, sugar moiety, or sugar moiety substituted with diangeloyl groups, at carbon position 21, 22, 24 and/or 28 of a pentacyclic triterpene, triterpene, triterpeniod, triterpeniod saponin or compound selected from formulae of the present application, produces inhibition of cancer growth, cancer invasion, cells invasion or cancer cell invasion. In an embodiment, the presence of group(s) selected from Tigloyl, angeloyl, Acetyl, Crotonoyl, 3,3-Dimethylartyloyl, senecioyl, Cinnamoyl, Pentenoyl, Hexanoyl, benzoyl, Ethylbutyryl, dibenzoyl, alkanoyl, alkenoyl, benzoyl alkyl substituted alkanoyl, alkanoyl substituted phenyl, alkenoyl substituted phenyl, aryl, acyl, heterocylic, heteroraryl, and sugar moiety, at carbon position 3, 8, 15, 21, 22, 24 and/or 28 of a triterpene, triterpeniod, triterpeniod saponin or compound selected from formulae of the present application produces activities including inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion, cell adhesion, cell attachment or cell circulating. In embodiment, the presence of group at carbon position 24, produces activities. In embodiment, the presence of group at carbon position 24 and 28 produces activities. In embodiment, the presence of group at carbon position 24 and 21 produces activities. In embodiment, the presence of group at carbon position 24, 28 and 21, produces activities. In embodiment, the presence of group at carbon position 24, 28 and 22 produces activities. In embodiment, the presence of group at carbon position 24, 28 and 3 produces activities. In embodiment, the presence of group at carbon position 24, and 3 produces activities. In embodiment, the presence of group at carbon position 28 and 3 produces activities. In embodiment, the presence of group at carbon position 3 produces activities. In embodiment, the presence of group at carbon position 21 and 22 produces activities.

This invention shows a method of synthesizing active compound by attaching functional group to a core compound, wherein the functional group(s) is/are selected from tigloyl, angeloyl, acetyl, crotonoyl, 3,3-Dimethylartyloyl, senecioyl, cinnamoyl, pentenoyl, hexanoyl, benzoyl, ethylbutyryl, dibenzoyl, alkanoyl, alkenoyl, benzoyl alkyl substituted alkanoyl, alkanoyl substituted phenyl, alkenoyl substituted phenyl, aryl, acyl, heterocylic, and heteroraryl, wherein the core compound is a 5 ring triterpene. In embodiment, the core compound is a 4 ring terpene. In embodiment, the core compound is a 3 ring terpene. In embodiment, the core compound is a 2 ring terpene. In embodiment, the core compound is a 1 ring terpene. The compounds provided in the invention are for treating cancers, inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion; cell adhesion, cell attachment, cell circulating; for inhibiting viruses; for preventing cerebral aging; for improving memory; improving cerebral functions; for curing enuresis, frequent micturition, urinary incontinence; dementia, Alzheimer\'s disease, autism, brain trauma, Parkinson\'s disease or other diseases caused by cerebral dysfunctions; for treating arthritis, rheumatism, poor circulation, arteriosclerosis, Raynaud\'s syndrome, angina pectoris, cardiac disorder, coronary heart disease, headache, dizziness, kidney disorder; cerebrovascular diseasea; inhibiting NF-Kappa B activation; for treating brain edema, severe acute respiratory syndrome, respiratory viral diseases, chronic venous insufficiency, hypertension, chronic venous disease, oedema, inflammation, hemonhoids, peripheral edema formation, varicose vein disease, flu, post traumatic edema and postoperative swelling; for inhibiting blood clots, for inhibiting ethanol absorption; for lowering blood sugar; for regulating adrenocorticotropin and corticosterone levels. This invention provides a composition for AntiMS, antianeurysm, antiasthmatic, anti-oedematous, anti-inflammatory, antibradykinic, anticapillarihemorrhagic, anticephalagic, anticervicobrachialgic, antieclamptic, antiedemic, antiencaphalitic, antiepiglottitic, antiexudative, antiflu, antifracture, antigingivitic, antihematomic, antiherpetic, antihistaminic, antihydrathritic, antimeningitic, antioxidant, antiperiodontic, antiphlebitic, antipleuritic, antiraucedo, antirhinitic, antitonsilitic, antiulcer, antivaricose, antivertiginous, cancerostatic, corticosterogenic, diuretic, fungicide, hemolytic, hyaluronidase inhibitor, lymphagogue, natriuretic, pesticide, pituitary stimulant, thymolytic, vasoprotective, inhibiting leishmaniases, modulating adhesion or angiogenesis of cells, antiparasitic; increase the expression of the genes: ANGPT2, DDIT3, LIF and NFKB1Z, and manufacturing an adjuvant composition and venotonic treatment.

Experiments presented in this invention showed that the compound AKOH has no effect in inhibiting cancer growth, cancer invasion, cells invasion or cancer cell invasion. AKOH was obtained by removing the angeloyl groups from carbon positions 21 and 22 of the active Xanifolia Y(Y3). This invention shows that the ability for inhibiting cancer invasion, cells invasion or cancer cell invasion of Xanifolia Y(Y3) are lost by removing angeloyl groups from carbon positions 21 and 22.

Experiments presented in this invention showed that the core compound including E4A, E5A, Xanifolia Y-core have no effect in inhibiting cancer growth, cancer invasion, cells invasion or cancer cell invasion. Xanifolia Y-core was obtained by removing the angeloyl groups from carbon positions 21 and 22, and the sugar moieties from carbon 3 of the active Xanifolia Y(Y3). E4A (E IV A) was obtained by removing the groups from carbon positions 3, 21 and 22 of the active Escin. E5A (E V A) was obtained by removing the groups from carbon positions 3, 21 and 22 of the active Escin.

This invention showed that the core compound including E4A, E5A, Xanifolia Y-core and AKOH have no hemolytic activity and anti cancer activity.

This invention showed that Tig-N, Tig -Q, Tig-R, Tig-T Tig-S and Tig-V do not have hemolytic activity up to 20 ug/ml. The original compound ES lyse 100% red blood cells (RBC) at 5 ug/ml. Compare to Y3, the ACH-Y3 is less potent in hemolytic activity. Tig-R has no hemolytic activity. This invention showed that Tig-N, Tig -Q, Tig-R, Tig-T Tig-S and Tig-V have anti cancer activities.

This invention shows that the ability for inhibiting cancer growth, cancer invasion, cells invasion or cancer cell invasion are maintained when the sugar moieties are removed from carbon position 3 of an active compound, triterpene, triterpeniod, or triterpeniod saponin. Experiments presented in this invention showed that the compound ACH-Y3 has the ability to inhibit cancer invasion, cells invasion or cancer cell invasion. The compound ACH-Y3 was obtained by removing the sugar moieties from carbon position 3 of a active Xanifolia Y(Y3). This invention shows that the ability for inhibiting cancer invasion, cells invasion or cancer cell invasion are maintained when the sugar moieties are removed from the carbon position 3 of active Xanifolia Y(Y3).

A compound which has bio-activities including inhibiting cancer growth, inhibiting cancer invasion, cells invasion or cancer cell invasion is called active compound.

This invention provides a use for compounds, compositions, and methods for manufacturing medicament for treating cancers, inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion; cell adhesion, cell attachment, cell circulating, or for inhibiting cancer metastasis, wherein the compounds comprise the structures selected from the formulae of the present application, wherein the compounds can be synthesized or isolated, wherein the compounds comprise the pentacyclic triterpenes, wherein the cells comprise cancer cells, wherein the cancers comprise breast cancer, leukocytic cancer, liver cancer, ovarian cancer, bladder cancer, prostatic cancer, skin cancer, bone cancer, brain cancer, leukemia cancer, lung cancer, colon cancer, CNS cancer, melanoma cancer, renal cancer, cervical cancer, esophageal cancer, testicular cancer, spleenic cancer, kidney cancer, lymphhatic cancer, pancreatic cancer, stomach cancer and thyroid cancer. The method of inhibiting cancer invasion, cells invasion or cancer cell invasion activities uses non-cytotoxic drug concentrations. The method of inhibiting metastasis uses non-cytotoxic drug concentrations. There is no noticeable change in cell morphology.

This invention provides methods for treating cancers, inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion; cell adhesion, cell attachment, cell circulating, migration, metastasis or growth of cancers, wherein the methods comprise affecting gene expression, wherein the methods comprise stimulating gene expression, or wherein the methods comprise inhibiting the gene expression, or wherein the methods comprise administering to a subject an effective amount of compounds, compositions in this application. In an embodiment, the method comprises contacting said cell with a compound selected from A1-18, A20-32, B1-18, B20-32, C1-18, C20-32, D1-18, D20-32, D1-18, D20-32, D1-18, D20-32, D1-18, D20-32, D1-18, D20-32, E1-18, E20-32, G1-18, G20-32, H1-18, H20-32, I1-18, I20-32, J1-18, J20-32, K1-18, K20-32, Xanifolia Y0, Y1, Y2, Y(Y3), Y5, Y7, Y8, Y9, Y10, Xanifolia (x), M10, Escin(bES), Aescin, ACH-Y(Y3), ACH-Y10, ACH-Y2, ACH-Y8, ACH-Y7, ACH-Y0, ACH-X, ACH-Z4, ACH-Z1, ACH-Escin(bES), ACH-M10 and a salt, ester, metabolite thereof, and the compounds selected from formulae 2A, and K.

In vitro studies show that a compound selected from structure (2A) or (K) inhibits cell adhesion to culture flasks. The compound blocks the function of these adhesive molecules on cells. In an embodiment, the selected compound blocks the function of these adhesive molecules on cells. In an embodiment, the selected compound blocks the function of these adhesive molecules on carcinoma cells. In an embodiment, the selected compound blocks the function of these adhesive molecules on the mesothelial cells. This invention provides an anti adhesion therapy which uses the compound as a mediator or inhibitor of adhesion proteins and angiopoietins. It inhibits excess adhesion and inhibits cell attachment. This invention provides compounds for use as a mediator for cell circulating, cell moving and inflammatory diseases. In an embodiment, the selected compound binds to the adhesive proteins (by masking) on the membrane and inhibits the interaction of adhesion proteins with their receptors. In an embodiment, the selected compound\'s action on the membrane affects adhesion proteins\' function in the membrane. The lost of adhesion activity of cancer cells is result from direct or indirect action of the selected compound on membrane proteins.

(Our purification methods and biological assays include the MTT assay in International Application No. PCT/US05/31900, filed Sep. 7, 2005, U.S. Ser. No. 11/289,142, filed Nov. 28, 2005, and U.S. Ser. No. 11/131,551, filed May 17, 2005, and PCT/US2008/002086, 1188-ALA-PCT, filed Feb. 15, 2008, the cell invasion experiments methods in International Application PCT/US2010/0042240, filed Jul. 16, 2010, the contents of which are incorporated herein by reference)

This invention provides a use of compounds or methods for inhibiting cancer invasion, cell invasion, cancer cell invasion, migration, metastasis or growth of cancers, wherein this invention comprises a process and method for administration of the composition, wherein administration is by intravenous injection, intravenous drip, intraperitoneal injection or oral administration; wherein administration is by intravenous drip: 0.003-0.03 mg/kg body weight of compound dissolved in 250 ml of 10% glucose solution or in 250 ml of 0.9% NaCl solution, or by intravenous injection: 0.003-0.03 mg/kg body weight per day of compound dissolved in 10-20 ml of 10% glucose solution or of 0.9% NaCl solution, or 0.01-0.03 mg/kg body weight of compound dissolved in 250 ml of 10% glucose solution or in 250 ml of 0.9% NaCl solution, or by intravenous injection: 0.01-0.03 mg/kg body weight per day of compound dissolved in 10-20 ml of 10% glucose solution or of 0.9% NaCl solution, or 0.01-0.05 mg/kg body weight of compound dissolved in 250 ml of 10% glucose solution or in 250 ml of 0.9% NaCl solution, or by intravenous injection: 0.01-0.05 mg/kg body weight per day of compound dissolved in 10-20 ml of 10% glucose solution or of 0.9% NaCl solution, or 0.05-0.2 mg/kg body weight of compound dissolved in 250 ml of 10% glucose solution or in 250 ml of 0.9% NaCl solution, or by intravenous injection: 0.05-0.2 mg/kg body weight per day of compound dissolved in 10-20 ml of 10% glucose solution or of 0.9% NaCl solution, or by intravenous drip: 0.1-0.2 mg/kg body weight per day of compound dissolved in 250 ml of 10% glucose solution or in 250 ml of 0.9% NaCl solution, or by intravenous injection: 0.1-0.2 mg/kg body weight per day compound dissolved in 10-20 ml of 10% glucose solution or of 0.9% NaCl solution, or by intraperitoneal injection(I.P.): 2.5 mg/kg body weight per day compound dissolved in 10% glucose solution or of 0.9% NaCl solution, or by oral administration wherein the dosage of mammal is 1-10 mg/kg, 10-30 mg/kg, 30-60 mg/kg, or 60-90 mg/kg body weight of compound, or by intravenous injection or intravenous drip wherein the dosage of mammal is 0.01-0.1 mg/kg body weight, 0.1-0.2 mg/kg, 0.2-0.4 mg/kg body weight, or 0.4-0.6 mg/kg body weight of compound, or by intraperitoneal injection (I.P.) wherein the dosage of mammal is 1-3 mg/kg, 3-5 mg/kg, 4-6 mg/kg, or 6-10 mg/kg body weight of compound.

This invention provides a use of compounds or methods for treating cancers, inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion; cell adhesion, cell attachment, cell circulating, migration, metastasis or growth of cancers, wherein the invention comprises a pharmaceutical composition comprising the compound of this invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent, wherein said compound is present in a concentration of 0.01 ug/ml to 65 ug/ml, or wherein said compound is present in a concentration of 0.01 ug/ml to 40 ug/ml, or wherein said compound is present in a concentration of 0.01 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 0.01 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 0.01 ug/ml to 5 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 5 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 7.5 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 0.1 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 5 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 7.5 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 1 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 5 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 7.5 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 3 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 5 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 7.5 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 4 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 8 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 9 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 5 ug/ml to 30 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 8 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 9 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 10 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 15 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 20 ug/ml, or wherein said compound is present in a concentration of 7 ug/ml to 30 ug/ml.

This invention provides a use of compounds or methods for treating cancers, inhibition of cancer growth, cancer invasion, cells invasion, cancer cell invasion; cell adhesion, cell attachment, cell circulating, migration, metastasis or growth of cancers, wherein the invention comprises a pharmaceutical composition comprising the compound of this invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent, wherein said compound is present in a concentration of 0.008 uM to 80 uM, or wherein said compound is present in a concentration of 0.01 uM to 60 uM, or wherein said compound is present in a concentration of 0.01 uM to 50 uM, or wherein said compound is present in a concentration of 0.01 uM to 40 uM, or wherein said compound is present in a concentration of 0.01 uM to 30 uM, or wherein said compound is present in a concentration of 0.01 uM to 20 uM, or wherein said compound is present in a concentration of 0.01 uM to 10 uM, or wherein said compound is present in a concentration of 5 uM to 10 uM, or wherein said compound is present in a concentration of 0.1 uM to 5 uM, or wherein said compound is present in a concentration of 0.1 uM to 7.5 uM, or wherein said compound is present in a concentration of 0.1 uM to 10 uM, or wherein said compound is present in a concentration of 0.1 uM to 15 uM, or wherein said compound is present in a concentration of 0.1 uM to 20 uM, or wherein said compound is present in a concentration of 0.1 uM to 30 uM or wherein said compound is present in a concentration of 0.1 uM to 40 uM, or wherein said compound is present in a concentration of 0.1 uM to 50 uM or wherein said compound is present in a concentration of 0.1 uM to 60 uM, or wherein said compound is present in a concentration of 0.1 uM to 80 uM, or wherein said compound is present in a concentration of 1 uM to 5 uM, or wherein said compound is present in a concentration of 1 uM to 7.5 uM, or wherein said compound is present in a concentration of 1 uM to 10 uM, or wherein said compound is present in a concentration of 1 uM to 15 uM, or wherein said compound is present in a concentration of 1 uM to 20 uM, or wherein said compound is present in a concentration of 1 uM to 30 uM or wherein said compound is present in a concentration of 1 uM to 40 uM, or wherein said compound is present in a concentration of 1 uM to 50 uM or wherein said compound is present in a concentration of 1 uM to 60 uM, or wherein said compound is present in a concentration of 1 uM to 80 uM, or wherein said compound is present in a concentration of 3 uM to 5 uM, or wherein said compound is present in a concentration of 3 uM to 7.5 uM, or wherein said compound is present in a concentration of 3 uM to 10 uM, or wherein said compound is present in a concentration of 3 uM to 15 uM, or wherein said compound is present in a concentration of 3 uM to 20 uM, or wherein said compound is present in a concentration of 3 uM to 30 uM or wherein said compound is present in a concentration of 3 uM to 40 uM, or wherein said compound is present in a concentration of 3 uM to 50 uM or wherein said compound is present in a concentration of 3 uM to 60 uM, or wherein said compound is present in a concentration of 3 uM to 80 uM, or wherein said compound is present in a concentration of 5 uM to 8 uM, or wherein said compound is present in a concentration of 5 uM to 10 uM, or wherein said compound is present in a concentration of 5 uM to 15 uM, or wherein said compound is present in a concentration of 5 uM to 20 uM, or wherein said compound is present in a concentration of 5 uM to 30 uM or wherein said compound is present in a concentration of 5 uM to 40 uM, or wherein said compound is present in a concentration of 5 uM to 50 uM or wherein said compound is present in a concentration of 5 uM to 60 uM, or wherein said compound is present in a concentration of 5 uM to 80 uM. or wherein said compound is present in a concentration of 7 uM to 8 uM, or wherein said compound is present in a concentration of 7 uM to 10 uM, or wherein said compound is present in a concentration of 7 uM to 15 uM, or wherein said compound is present in a concentration of 7 uM to 20 uM, or wherein said compound is present in a concentration of 7 uM to 30 uM or wherein said compound is present in a concentration of 7 uM to 40 uM, or wherein said compound is present in a concentration of 7 uM to 50 uM or wherein said compound is present in a concentration of 7 uM to 60 uM, or wherein said compound is present in a concentration of 7 uM to 80 uM.

The invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative, and are not meant to limit the invention as described herein, which is defined by the claims which follow thereafter.

Throughout this application, various references or publications are cited. Disclosures of these references or publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

It is to be noted that the transitional term “comprising”, which is synonymous with “including”, “containing” or “characterized by”, is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.

Example 1 Tablet for Dose Containing 10 mg, 20 mg 30 mg of Active Compound



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this compounds for treating cancer and other diseases patent application.
###
monitor keywords

Browse recent Pacific Arrow Limited patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like compounds for treating cancer and other diseases or other areas of interest.
###


Previous Patent Application:
Method for treating osteoarthritis
Next Patent Application:
Methods of controlling venous irritation associated with the treatment of a cardiac disorder
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the compounds for treating cancer and other diseases patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.02519 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7664
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120277308 A1
Publish Date
11/01/2012
Document #
File Date
12/20/2014
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Your Message Here(14K)


Thyroid


Follow us on Twitter
twitter icon@FreshPatents

Pacific Arrow Limited

Browse recent Pacific Arrow Limited patents

Drug, Bio-affecting And Body Treating Compositions   Designated Organic Active Ingredient Containing (doai)   (o=)n(=o)-o-c Containing (e.g., Nitrate Ester, Etc.)   Cyano Or Isocyano Bonded Directly To Carbon   Z-c(=o)-o-y, Wherein Z Contains A Benzene Ring   Compound Contains Two Or More C(=o)o Groups Indirectly Bonded Together By Only Conalent Bonds