FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Sodium transhinone iia sulfonate hydrate and preparation method and use thereof

last patentdownload pdfdownload imgimage previewnext patent


20120277304 patent thumbnailZoom

Sodium transhinone iia sulfonate hydrate and preparation method and use thereof


The present invention relates to sodium tanshinone IIA sulfonate hydrates as well as preparation methods and uses thereof. The sodium tanshinone IIA sulfonate hydrates have molecular formula of C19H17NaO6S.nH2O, wherein n=0.5-4.0. The sodium tanshinone IIA sulfonate hydrates of the present invention have better storage stability than anhydrous sodium tanshinone IIA sulfonate.
Related Terms: Tanshinone

Inventor: Li Liu
USPTO Applicaton #: #20120277304 - Class: 514468 (USPTO) - 11/01/12 - Class 514 
Drug, Bio-affecting And Body Treating Compositions > Designated Organic Active Ingredient Containing (doai) >Heterocyclic Carbon Compounds Containing A Hetero Ring Having Chalcogen (i.e., O,s,se Or Te) Or Nitrogen As The Only Ring Hetero Atoms Doai >Oxygen Containing Hetero Ring >The Hetero Ring Is Five-membered >Polycyclo Ring System Having The Hetero Ring As One Of The Cyclos

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277304, Sodium transhinone iia sulfonate hydrate and preparation method and use thereof.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to pharmaceutical technological field. Specifically, the present invention provides a sodium tanshinone IIA sulfonate hydrate useful in treatment of cardio-cerebral vascular disorders. The present invention further relates to a method for preparing the sodium tanshinone IIA sulfonate hydrate of the present invention and use of the sodium tanshinone IIA sulfonate hydrate in the treatment of cardio-cerebral vascular disorders or method thereof.

BACKGROUND ART

Tanshinone IIA is obtained by extraction from Chinese herb dan-shen (salvia miltiorrhiza bunge) (Acta Chimica Sinica, 1978, 3:199-206). Sodium tanshinone IIA sulfonate is obtained by sulfonating tanshinone IIA, this drug has strong water solubility and better therapeutic effects than tanshinone IIA. Sodium tanshinone IIA sulfonate can significantly inhibit the increase of calcium influx caused by high potassium, and has similar effects as convention calcium antagonist Verapamil. Sodium tanshinone IIA sulfonate can significantly reduce spontaneous electric activity on vascular smooth muscle, induce vasodilation, via synergic or combining effects of opening potassium channels of KATP, KCa and blocking calcium channels, thereby having important application value in the treatment of cardio-cerebral vascular diseases. So far, domestic and abroad documents merely report sodium tanshinone IIA sulfonate (tanshinone II Sulfonate sodium, C19H17NaO6S, molecular weight: 396.39), and no document reports sodium tanshinone IIA sulfonate hydrate crystal and preparation method and use thereof.

DESCRIPTION OF THE INVENTION

The inventors of the present invention surprisingly found in research that crystal water-containing sodium tanshinone IIA sulfonate (i.e., sodium tanshinone IIA sulfonate hydrate) has a hygroscopicity far lower than sodium tanshinone IIA sulfonate not containing crystal water, and the crystal water-containing sodium tanshinone IIA sulfonate is more stable than the sodium tanshinone IIA sulfonate not containing crystal water, and thus easy to store and transport, and easy to form water soluble preparations due to its good water solubility at room temperature. In addition, in compared to anhydrous sodium tanshinone IIA sulfonate, the sodium tanshinone IIA sulfonate hydrate of the present invention has good sliding property, improved maneuverability of preparations. Based on the above findings, the inventors of the present invention completed the present invention.

On one aspect, the present invention provides a sodium tanshinone IIA sulfonate hydrate crystal, which molecular formula is C19H17NaO6S.nH2O, wherein n=0.5-4.0.

In one embodiment, the present invention provides a sodium tanshinone IIA sulfonate hydrate, which molecular formula is C19H17NaO6S.nH2O, wherein n=0.5-3.0 or n=0.5-2.5.

In one embodiment, the present invention provides a sodium tanshinone IIA sulfonate hydrate, wherein n=2.5.

In another embodiment, the present invention provides a sodium tanshinone IIA sulfonate hydrate, wherein n=1.5.

In another embodiment, the present invention provides sodium tanshinone IIA sulfonate hydrate, wherein n=0.5.

The sodium tanshinone IIA sulfonate hydrate of the present invention can have different crystal forms, for example, the X-ray powder diffraction patterns of sodium tanshinone IIA sulfonate 0.5, 1.5, 2.5, 3.5 hydrates as prepared from methanol-water, ethanol-water or acetone-water crystallization systems or recrystallization systems can be different.

On another aspect, the present invention provides a sodium tanshinone IIA sulfonate 1.5 hydrate having X-ray powder diffraction features.

In one embodiment, the sodium tanshinone IIA sulfonate 0.5 hydrate of the present invention has corresponding characteristic values at the following 2θ: about 3.7, 7.6, 9.0, 9.6, 15.3, 22.0, 26.0, 27.6, 29.8, in a measurement range of diffraction angle 2θ (3-80°) as measured by X-ray powder diffraction method.

In another embodiment, the sodium tanshinone IIA sulfonate 1.5 hydrate of the present invention has corresponding characteristic values at the following 2θ: about 3.7, 6.2, 7.3, 8.8, 9.2, 11.5, 14.7, 15.4, 17, 17.7, 20.6, 21.2, 25.9, 27.1, 27.6, 29.4, in a measurement range of diffraction angle 2θ (3-80°) as measured by X-ray powder diffraction method.

In another embodiment, the sodium tanshinone IIA sulfonate 2.5 hydrate of the present invention has corresponding characteristic values at the following 2θ: about 3.7, 4.3, 6.2, 7.3, 8.8, 9.3, 11.5, 14.7, 15.4, 17, 17.7, 21.2, 25.9, 27.3, 27.6, 29.4, in a measurement range of diffraction angle 2θ (3-80°) as measured by X-ray powder diffraction method.

On another aspect, the present invention provides a method for preparing the sodium tanshinone IIA sulfonate hydrate crystal of the present invention, the method comprising:

Method A: placing tanshinone IIA in a reaction container, adding acetic acid, acetic anhydride, propionic acid, propionic anhydride, C1-C6 low hydrocarbons substituted with halogen, including one or more of dichloromethane, dichloroethane, chloroform, tetrachloroethane, stirring, adding one or more of solutions of acetic acid, acetic anhydride, propionic acid, propionic anhydride in sulfuric acid or fuming sulfuric acid or chlorosulfonic acid, after the end of dropwise adding, stirring at 30° C. or lower for 0.1-6 h, slowly pouring the reactant into water, adding one or more of solutions of sodium chloride, sodium carbonate, sodium bicarbonate, sodium hydroxide (preferably, saturated solutions thereof), precipitating sufficiently, filtering, washing the precipitate once or several times with saturated sodium chloride solution or saturated sodium sulfate solution, then washing once or several times with one or more of water or C1-C6 low molecular weight alcohols including methanol, ethanol, isopropanol, filtering, removing the residual sodium hydrochloride with anhydrous ethanol refluxing, concentrating, subjecting the resultant solid to crystallization with water, C1-C6 low molecular weight alcohols including methanol, ethanol, isopropanol, etc., C3-C6 low ketones including acetone, butanone, hexone, etc., C2-C8 low esters including butyl acetate, ethyl acetate, ethyl formate, etc., C1-C6 low hydrocarbons substituted with halogen, including dichloromethane, dichloroethane, chloroform, etc., C2-C6 low ethers including ethyl ether, methyl ethyl ether, isopropyl ether, etc., C5-C10 straight or branched alkanes or cycloalkanes including pentane, n-hexane, petroleum ether, cyclohexane, etc., aromatic hydrocarbons including one or more of benzene, toluene, etc., standing, cooling, filtering after crystal precipitation, drying to obtain sodium tanshinone IIA sulfonate hydrate crystal, and this crystallization procedure can be repeated once or several times to obtain a product with much high purity; or

Method B: placing tanshinone IIA in a reaction container, adding acetic acid, acetic anhydride, propionic acid, propionic anhydride, C1-C6 low hydrocarbons substituted with halogen, including one or more of dichloromethane, dichloroethane, chloroform, tetrachloroethane, stirring, adding a chlorosulfonic acid solution in C1-C6 low hydrocarbons substituted with halogen, including one or more of dichloromethane, dichloroethane, chloroform, tetrachloroethane, after the end of dropwise adding, stirring at 30° C. or lower for 0.1-6 h, slowly pouring the reactant into water, separating organic layer, adding one or more of saturated solutions of sodium chloride, sodium carbonate, sodium bicarbonate, sodium hydroxide to the resultant aqueous solution layer, standing, precipitating sufficiently, filtering, washing the precipitate once or several times with saturated sodium chloride solution or saturated sodium sulfate solution, then washing once or several times with one or more of water or C1-C6 low molecular weight alcohols including methanol, ethanol, isopropanol, filtering, subjecting the resultant solid to crystallization with water, C1-C6 low molecular weight alcohols including methanol, ethanol, isopropanol, etc., C3-C6 low ketones including acetone, butanone, hexone, etc., C2-C8 low esters including butyl acetate, ethyl acetate, ethyl formate, etc., C1-C6 low hydrocarbons substituted with halogen, including dichloromethane, dichloroethane, chloroform, etc., C2-C6 low ethers including ethyl ether, methyl ethyl ether, isopropyl ether, etc., C5-C10 straight or branched alkanes or cycloalkanes including pentane, n-hexane, petroleum ether, cyclohexane, etc., aromatic hydrocarbons including one or more of benzene, toluene, etc., standing, cooling, filtering after crystal precipitation, drying to obtain sodium tanshinone IIA sulfonate hydrate crystal, and this crystallization procedure can be repeated once or several times.

In one embodiment, the solvent used for crystallization or recrystallization of sodium tanshinone IIA sulfonate hydrate crystal is preferably one or more of water, methanol, ethanol, isopropanol, acetone, butone, hexone, methyl acetate, ethyl acetate, dichloromethane, chloroform, ethyl ether, isopropyl ether, petroleum ether and benzene.

The drying for the product of the present invention can be performed under conditions of different temperatures (e.g., 20-100° C.), drying time (1 h to several days), or with additional drying agents (including silica gel, phosphorus pentoxide, anhydrous calcium chloride, anhydrous sodium sulfate, etc.), or using normal pressure or reduced pressure to dry the final product. The drying temperature is preferably at 60° C. or lower.

On further another aspect, the present invention provides a pharmaceutical composition, comprising the sodium tanshinone IIA sulfonate hydrate of the present invention, and a pharmaceutically acceptable carrier.

In one embodiment, the pharmaceutical composition of the present invention is prepared to form frozen dried powder for injection, aseptically subpackaged powders for injection, infusion solutions, small volume injections and preparations for administration via gastrointestinal tract, etc.

The oral preparations include tablets, capsules, granules, which can comprise pharmaceutically acceptable fillers, such as starch, modified starch, lactose, microcrystalline cellulose, cyclodextrin, sorbitol, mannitol, calcium phosphate, amino acids, etc.; the pharmaceutically acceptable disintegrants, such as starch, modified starch, microcrystalline cellulose, sodium carboxymethyl starch, cross-linked polyvinylpyrrolidone, low-substituted hydroxypropyl cellulose, surfactants; pharmaceutically acceptable wetting agents and adhesives, such as gelling starch, methyl cellulose, carboxymethyl cellulose, ethyl cellulose, polyvinylpyrrolidone, alginic acid and salts thereof; pharmaceutically acceptable lubricants and glidants, such as stearic acid, magnesium stearate, polyethylene glycol 4000-8000, talc powder, micronized silica, magnesium dodecylsulfate, etc.; pharmaceutically acceptable sweetening agents and flavoring agents, such as aspartame, sodium cyclamate, saccharin sodium, trichlorosucrose, edible essences, etc.

The sodium tanshinone IIA sulfonate hydrate of the present invention can be processed to form froze-dried powder injections, for example, via the following method: providing sodium tanshinone IIA sulfonate hydrate, optionally adding pharmaceutically acceptable auxiliary solvent, frozen-drying support agent or excipient, stabilizer, injection water, stirring for dissolution, if necessary, adding pharmaceutically acceptable acid/alkali to adjust pH to 3.5-8.5, adding activated carbon 0.005-0.5% (W/V), stirring for 15-45 min, filtering, supplementing water, aseptically filtering, subpackaging 5-80 mg/bottle (expressed in main drug), frozen-drying, tamponing to obtain finished product.

The sodium tanshinone IIA sulfonate hydrate of the present invention can further be processed to form small volume injections, for example, via the following method: adding to the sodium tanshinone IIA sulfonate hydrate with injection water and pharmaceutically acceptable additives, for examples: pharmaceutically acceptable pH adjusters, pharmaceutically acceptable antioxidants, inert gases, filtering, sterilizing to obtain sterilized small volume injections with a pH value of 3.5-8.5.

The pharmaceutically acceptable frozen-drying support agent or excipient can include one or more of lactose, glucose, mannitol, sorbitol, xylitol, dextran, amino acids or salts thereof (including glycine, taurine, arginine, etc.), sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium deoxycholate, etc.

The pharmaceutically acceptable pH adjusters can be pharmaceutically acceptable inorganic acids or organic acids, inorganic alkalis or organic alkalis, and can be wider sense Lewis acids or alkalis, can contain one or more thereof, can be one or more of hydrochloric acid, phosphoric acid, propionic acid, acetic acid and acetate, such as sodium acetate, etc., lactic acid and pharmaceutically acceptable lactates, pharmaceutically acceptable citrates, sodium carbonate, sodium bicarbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide, phosphates, tartaric acid and pharmaceutically acceptable salts thereof, borax, boric acid, succinic acid, hexanoic acid, adipic acid, fumaric acid, maleic acid, trihydroxyaminomethane, diethanolamine, ethanolamine, isopropanolamine, diisopropanolamine, 2-amino-2-(hydroxymethyl)-propan-1,3-diolamine, hexan-1,2-diamine, N-methylglucosamine, diisopropylamine and salt thereof, polyhydroxycarboxylic acids and pharmaceutically acceptable salts thereof, such as glucuronic acid, glucanic acid, lactobionic acid, malic acid, threonic acid, glucoheptonic acid, amino acids and amino acid salts, etc.

The pharmaceutically acceptable antioxidants and stabilizers can be one or more of sulfurous acid, sulfites, bisulfites, metabisulfites, dithionites, thiosulfates, organic sulfur compounds, such as thiourea, glutathione, dimercaptopropanol, thioglycolic acid and salts thereof, thiolactic acid and salts thereof, thiodipropionic acid and salts thereof, phenol compounds, such as gallic acid and salts thereof, caffeic acid, caffeiates, ferulic acid, ferulates, di-tert-butyl-p-phenol, 2,5-dihydroxybenzoic acid, 2,5-dihydroxybenzoates, phenol or derivatives, salicylic acid and salts thereof; amino acids and salts thereof; ascorbic acid and ascorbates, isoascorbic acid and isoascorbates, nicotinamide, tartaric acid, nitrate, phosphates, pharmaceutically acceptable acetates, citrates, EDTA and EDTA salts, such as EDTA disodium, EDTA tetrasodium, N-bis(2-hydroxyethyl)glycine, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, glucosyl-cyclodextrin (G1-CYD), maltosyl-β-cyclodextrin, hydroxypropyl-β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CYD), 3-hydroxypropyl-β-cyclodextrin (3-HP-β-CYD), sulfobutyl ether-β-cyclodextrin (SBE-β-CD), such as (SBE7-β-CD), SBE4-β-CD, etc.

The pharmaceutically acceptable auxiliary solvents can be one or more of glucose, xylitol, sorbitol, mannitol, nicotinamide, N-methylglucosamine, N-ethylglucosamine, phosphoric acid and pharmaceutically acceptable phosphates (can be sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium dihydrogen phosphate, etc.), lactic acid, sodium lactate, citric acid, sodium citrate, polyhydroxycarboxylic acids and pharmaceutically acceptable salts thereof (such as glucuronic acid, glucanic acid, lactobionic acid, malic acid, threonic acid, glucoheptonic acid or pharmaceutically acceptable salts thereof), amino acids and amino acid salts (can be arginine hydrochloride, lysine hydrochloride, etc.), hydrochloric acid, sulfuric acid, tartaric acid, Tween 20-80, poloxamers (including poloxamers 124, 188, 237, 338, 407, etc.), polyethylene glycol 200-2000, ethanol, ethylene glycol, glycerol, glucosyl-cyclodextrin (G1-CYD), maltosyl-β-cyclodextrin, hydroxypropyl-β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CYD), 3-hydroxypropyl-β-cyclodextrin (3-HP-β-CYD), sulfobutyl ether-β-cyclodextrin (SBE-β-CD), such as (SBE7-β-CD), SBE4-β-CD, and water, etc.

The pharmaceutically acceptable isosmotic adjusters can be one or more of glucose, fructose, xylitol, sorbitol, mannitol, inverted sugars, maltose, dextran, sodium chloride, potassium chloride, sodium lactate, etc.

The sodium tanshinone IIA sulfonate hydrate of the present invention can be used as calcium antagonist in prophylaxis or treatment of coronary heart disease, angina pectoris, myocardial infarction, arrhythmia, ischemic brain diseases, including cerebral thrombosis, cerebral embolism; distal circulation disorders such as various arterial occlusions, angiitis, microcirculation disturbance caused by diabetes, hypertension, hyperlipidemia, etc. in human and mammals.

On another aspect, the present invention provides a use of the sodium tanshinone IIA sulfonate hydrate of the present invention in the manufacture of a medicament, the medicament is useful in treatment or prophylaxis coronary heart disease, angina pectoris, myocardial infarction, arrhythmia, ischemic brain diseases, distal circulation disorders including various arterial occlusions, angiitis, microcirculation disturbance caused by diabetes, hypertension, hyperlipidemia in human and mammals.

Alternatively, the present invention provides a method of treatment or prophylaxis of the above diseases by using the sodium tanshinone IIA sulfonate hydrate of the present invention, comprising: administering a subject in need thereof with a prophylactically or therapeutically effective amount of the sodium tanshinone IIA sulfonate hydrate of the present invention.

Dosage and usage: in general, for an adult, intramuscular injection: 5-80 mg per time, 1-2 times per day. Intravenous injection: 5-80 mg per time, diluted with 20 ml of 25% glucose injection. Intravenous drop: 5-80 mg, diluted with 250-500 ml of 5% glucose injection solution or 0.9% sodium chloride injection solution, 1-2 times per day. For a child, use half or less of the above dosages. Dosage and usage for administration via gastrointestinal tract: for a human or animal with body weight of 10-70 kg, 10-200 mg per day in general, administered in 1-3 batches; for a child, use half or less of the above dosage.

The hygroscopicity test performed according to the Pharmacopoeia of the People\'s Republic of China (2005 Edition) confirmed that the sodium tanshinone IIA sulfonate hydrate of the present invention is much lower than anhydrous sodium tanshinone IIA sulfonate.

In addition, the accelerated stability test performed according to the Pharmacopoeia of the People\'s Republic of China (2005 Edition) confirmed that the sodium tanshinone IIA sulfonate hydrate crystal had better storage stability than anhydrous sodium tanshinone IIA sulfonate, and thus can be stably stored for a more longer period.

The sodium tanshinone IIA sulfonate hydrate of the present invention is a red or brick-red or brownish red crystalline powder. Other than requiring air isolation to avoid adhesion due to deliquescence in processing anhydrous sodium tanshinone IIA sulfonate, the sodium tanshinone IIA sulfonate hydrate crystal of the present invention has good sliding property, thereby improving the maneuverability of preparations; and the obtained solid preparations have good dissolution property so that they can be easily absorbed and enter into blood circulation, improve bioavailability and facilitate their quick onset.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a thermogram of sodium tanshinone IIA sulfonate 2.5 hydrate.

FIG. 2 is a thermogram of sodium tanshinone IIA sulfonate 1.5 hydrate.

FIG. 3 is a thermogram of sodium tanshinone IIA sulfonate 0.5 hydrate.

FIG. 4 is an X-ray powder diffraction pattern of sodium tanshinone IIA sulfonate 0.5 hydrate.

FIG. 5 is an X-ray powder diffraction pattern of sodium tanshinone IIA sulfonate 1.5 hydrate.

SPECIFIC MODELS FOR CARRYING OUT THE INVENTION Method of Thermal Analysis

Assay condition: Setsys 16, NETZSCH STA449C, from Setaram Company, sample amount: about 5 mg, temperature slope rate: 10 K/min, N2 flow rate: 50 ml/min, temperature: room temperature to about 400° C. in general.

Surprisingly, in distinctive, the hydrates of the present invention have corresponding endothermic peaks at weight-lose platform in thermograms (TG-DTA or TG-DSC), the thermograms indicate the crystalline hydrates of sodium tanshinone IIA sulfonate, such as 0.5 hydrate, 1.5 hydrate, 2.5 hydrate thereof, etc.

X-Ray Powder Diffraction Method

D/MX-IIIA X-ray diffractometer in the Material Testing Center of Wuhan University of Science and Technology was used to determine the X-ray diffraction patterns of sodium tanshinone IIA sulfonate hydrates with a diffraction angle 2θ scanning range of 3-80°.

Hygroscopicity Test

Samples of sodium tanshinone IIA sulfonate hydrates and anhydrous sodium tanshinone IIA sulfonate: anhydrous sodium tanshinone IIA sulfonate and the hydrates of the present invention, about 5 g for each, were placed in dry watch glass with constant weight, precisely weighed, subjected to the test at 25° C. and a relative humidity (RH) of 75%, separately sampled at 0 h and 48 h of the test, and the percentages of weight gain due to hygroscopicity was calculated. The results show that anhydrous sodium tanshinone IIA sulfonate has a hygroscopicity much higher than the sodium tanshinone IIA sulfonate hydrates of the present invention.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Sodium transhinone iia sulfonate hydrate and preparation method and use thereof patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Sodium transhinone iia sulfonate hydrate and preparation method and use thereof or other areas of interest.
###


Previous Patent Application:
Method for modulating ion transporter
Next Patent Application:
Fatty acid guanidine and salicylate guanidine derivatives and their uses
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Sodium transhinone iia sulfonate hydrate and preparation method and use thereof patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.61533 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.8582
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277304 A1
Publish Date
11/01/2012
Document #
13505878
File Date
11/03/2010
USPTO Class
514468
Other USPTO Classes
549457
International Class
/
Drawings
5


Tanshinone


Follow us on Twitter
twitter icon@FreshPatents