FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2012: 2 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors

last patentdownload pdfdownload imgimage previewnext patent


20120277212 patent thumbnailZoom

Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors


The present invention provides new oxime derivatives of the general formula (I), pharmaceutical compositions containing them and their use for the treatment and/or prophylaxis of conditions associated with altered glutamatergic signalling and/or functions, and/or conditions which can be affected by alteration of glutamate level or signalling in mammals. This invention further provides new oxime derivatives of the general formula (I) consisting of modulators of nervous system receptors sensitive to glutamate, which makes them particularly suitable for the treatment and/or prophylaxis of acute and chronic neurological and/or psychiatric disorders. In particular embodiments, the new oxime derivatives of the invention are modulators of metabotropic glutamate receptors (mGluRs). The invention further provides positive allosteric modulators of mGluRs and more specifically positive alSosteric modulators of mGluR4.

Browse recent Domain Therapeutics patents - Illkirch Graffenstaden, FR
Inventors: Stephan Schann, Stanislas Mayer, Christophe Morice, Bruno Giethlen
USPTO Applicaton #: #20120277212 - Class: 51421115 (USPTO) - 11/01/12 - Class 514 
Drug, Bio-affecting And Body Treating Compositions > Designated Organic Active Ingredient Containing (doai) >Heterocyclic Carbon Compounds Containing A Hetero Ring Having Chalcogen (i.e., O,s,se Or Te) Or Nitrogen As The Only Ring Hetero Atoms Doai >Hetero Ring Contains Seven Members Including Nitrogen, Carbon And Chalcogen >Additional Nitrogen Containing Hetero Ring Attached Directly Or Indirectly To The Seven-membered Hetero Ring By Nonionic Bonding

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277212, Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors.

last patentpdficondownload pdfimage previewnext patent

The present invention provides new oxime derivatives of the general formula (I), pharmaceutical compositions containing them and their use for the treatment and/or prophylaxis of conditions associated with altered glutamatergic signalling and/or functions, and/or conditions which can be affected by alteration of glutamate level or signalling in mammals. This invention further provides new oxime derivatives of the general formula (I) consisting of modulators of nervous system receptors sensitive to glutamate, which makes them particularly suitable for the treatment and/or prophylaxis of acute and chronic neurological and/or psychiatric disorders. In particular embodiments, the new oxime derivatives of the invention are modulators of metabotropic glutamate receptors (mGluRs). The invention further provides positive allosteric modulators of mGluRs and more specifically positive allosteric modulators of mGluR4.

Glutamatergic pathways have been shown to be clearly involved in the physiopathology of a number of neuronal damages and injuries. Many nervous system disorders including epilepsy and chronic or acute degenerative processes such as for example Alzheimer\'s disease, Huntington\'s disease, Parkinson\'s disease and amyotrophic lateral sclerosis (Mattson M P., Neuromolecular Med., 3(2), 65-94, 2003), but also AIDS-induced dementia, multiple sclerosis, spinal muscular atrophy, retinopathy, stroke, ischemic, hypoxia, hypoglycaemia and various traumatic brain injuries, involve neuronal cell death caused by imbalanced levels of glutamate. It has also been shown that drug-induced neurotoxicity, for example neurotoxic effects of methamphetamine (METH) on striatal dopaminergic neurons, could actually be mediated by over-stimulation of the glutamate receptors (Stephans S E and Yamamoto B K, Synapse 17(3), 203-9, 1994). Antidepressant and anxiolytic-like effects of compounds acting on glutamate have also been observed on mice, suggesting that glutamatergic transmission is implicated in the pathophysiology of affective disorders such as major depression, schizophrenia and anxiety (Palucha A et al., Pharmacol. Ther. 115(1), 116-47, 2007; Cryan J F at al., Eur. J. Neurosc. 17(11), 2409-17, 2003; Conn P J at al., Trends Pharmacol. Sci. 30(1), 25-31, 2009). Consequently, any compound able to modulate glutamatergic signalling or function would constitute a promising therapeutic compound for many disorders of the nervous system.

Moreover, compounds modulating glutamate level or signalling may be of great therapeutic value for diseases and/or disorders not directly mediated by glutamate levels and/or glutamate receptors malfunctioning, but which could be affected by alteration of glutamate levels or signaling.

In the central nervous system (CNS), L-glutamate (Glu) is the main excitatory neurotransmitter and is referred to as an excitatory amino-acid (EAA), and gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter. The balance between excitation and inhibition is of utmost importance to CNS functions, and dysfunctions of either of the two can be related to various neurological disorders.

Glutamate is ubiquitously distributed in the nervous system in high concentrations, especially in the brain and spinal cord of mammals, where it is working at a variety of excitatory synapses being thereby involved in virtually all physiological functions such as motor control, vision, central control of heart, processes of learning and memory. However, a large number of studies have established that cellular communication involving glutamate can also lead to a mechanism of cell destruction. This combination of neuroexcitatory activities and neurotoxic properties is called excitotoxicity.

Glutamate operates through two classes of receptors (Bräuner-Osborne H at al., J. Med. Chem. 43(14), 2609-45, 2000). The first class of glutamate receptors is directly coupled to the opening of cation channels in the cellular membrane of the neurons. Therefore they are called ionotropic glutamate receptors (IGluRs). The IGluRs are divided in three subtypes, which are named according to the depolarizing action of their selective agonists: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA). The second class of glutamate receptor consists of G-protein coupled receptors (GPCRs) called metabotropic glutamate receptors (mGluRs). These mGluRs are localized both pre- and post-synaptically. They are coupled to multiple second messenger systems and their role is to regulate the activity of the ionic channels or enzymes producing second messengers via G-proteins binding the GTP (Conn P J and Pin J P., Annu. Rev. Pharmacol. Toxicol., 37, 205-37, 1997). Although they are generally not directly involved in rapid synaptic transmission, the mGluRs modulate the efficacy of the synapses by regulating either the post-synaptic channels and their receptors, or the pre-synaptic release or recapture of glutamate. Therefore, mGluRs play an important role in a variety of physiological processes such as long-term potentiation and long-term depression of synaptic transmission, regulation of baroreceptive reflexes, spatial learning, motor learning, and postural and kinetic integration.

To date, eight mGluRs have been cloned and classified in three groups according to their sequence homologies, pharmacological properties and signal transduction mechanisms. Group I is constituted of mGluR1 and mGluR5, group II of mGluR2 and mGluR3 and group III of mGluR4, mGluR6, mGluR7 and mGluR8 (Pin J P and Acher F., Curr. Drug Targets CNS Neurol. Disord., 1(3), 297-317, 2002; Schoepp D D at al., Neuropharmacology, 38(10), 1431-76, 1999).

mGluRs modulators can be classified in two families depending on their site of interaction with the receptor (see Bräuner-Osborne H et al., J. Med. Chem. 43(14), 2609-45, 2000 for review). The first family consists in orthosteric modulators (or competitive modulators) able to interact with the glutamate binding-site of the mGluRs, which is localized in the large extra-cellular N-terminal part of the receptor (about 560 amino acids). Therefore, they are glutamate analogs and constitute a highly polar family of ligand. Examples of orthosteric modulators are S-DHPG or LY-367385 for group I mGluRs, LY-354740 or (2R-4R)-APDC for group II mGluRs and ACPT-I or L-AP4 for group III mGluRs. The second family of mGluRs modulators consists in allosteric modulators that interact with a different site from the extracellular active site of the receptor (see Bridges T M et al., ACS Chem Biol, 3(9), 530-41, 2008 for review). Their action results in a modulation of the effects induced by the endogenous ligand glutamate. Examples of such allosteric modulators are Ro-674853, MPEP or JNJ16259685 for group I mGluRs and CBiPES, LY181837 or LY487379 for group II mGluRs.

For groups III mGluRs, examples of allosteric modulators were so far described for the mGluR subtype 4 (mGluR4). PHCCC, MPEP and SIB1893 (Maj M at al., Neuropharmacology, 45(7), 895-903, 2003; Mathiesen J M at al., Br. J. Pharmacol. 138(6), 1026-30, 2003) were the first ones described in 2003. More recently, more potent positive allosteric modulators were reported in the literature (Niswender C M et al., Mol. Pharmacol. 74(5), 1345-58, 2008; Niswender C M at al., Bioorg. Med. Chem. Lett, 18(20), 5626-30, 2008; Williams R et al., Bioorg. Med. Chem. Lett. 19(3), 962-6, 2009; Engers D W et al., J. Med. Chem. May 27, 2009) and in two patent publications describing families of amido and heteroaromatic compounds (WO 2009/010454 and WO 2009/010455).

Numerous studies have already described the potential applications of mGluR modulators in neuroprotection (see Bruno V et al., J. Cereb. Blood Flow Metab., 21(9), 1013-33, 2001 for review). For instance, antagonist compounds of group I mGluRs showed interesting results in animal models for anxiety and postischemic neuronal injury (Pilc A et al., Neuropharmacology, 43(2), 181-7, 2002; Meli E et al., Pharmacol. Biochem. Behav., 73(2), 439-46, 2002), agonists of group II mGluRs showed good results in animal models for Parkinson and anxiety (Konieczny J et al., Naunyn-Schmiederbergs Arch. Pharmacol., 358(4), 500-2, 1998).

Group III mGluR modulators showed positive results in several animal models of schizophrenia (Palucha-Poniewiera A et al., Neuropharmacology, 55(4), 517-24, 2008) and chronic pain (Goudet C et al., Pain, 137(1), 112-24, 2008; Zhang H M et al., Neuroscience, 158(2), 875-84, 2009).

Group III mGluR were also shown to exert the excitotoxic actions of homocysteine and homocysteic acid contributing to the neuronal pathology and immunosenescence that occur in Alzheimer Disease (Boldyrev A A and Johnson P, J. Alzheimers Dis. 11(2), 219-28, 2007).

Moreover, group III mGluR modulators showed promising results in animal models of Parkinson and neurodegeneration (Conn P J et al., Nat. Rev. Neuroscience, 6(10), 787-98, 2005 for review; Vernon A C et al., J. Pharmacol. Exp. Ther., 320(1), 397-409, 2007; Lopez S et al., Neuropharmacology, 55(4), 483-90, 2008; Vernon A C et al, Neuroreport, 19(4), 475-8, 2008). It was further demonstrated with selective ligands that the mGluR subtype implicated in these antiparkinsonian and neuroprotective effects was mGluR4 (Marino M J et al., Proc. Natl. Acad. Sci. USA 100(23), 13668-73, 2003; Battaglia G et al., J. Neurosci. 26(27), 7222-9, 2006; Niswender C M et al., Mol. Pharmacol. 74(5), 1345-58, 2008).

mGluR4 modulators were also shown to exert anxiolytic activity (Stachowicz K et al., Eur. J. Pharmacol., 498(1-3), 153-6, 2004) and anti-depressive actions (Palucha A et al., Neuropharmacology 46(2), 151-9, 2004; Klak K et al., Amino Acids 32(2), 169-72, 2006).

In addition, mGluR4 were also shown to be involved in glucagon secretion inhibition (Uehara S., Diabetes 53(4), 998-1006, 2004). Therefore, orthosteric or positive allosteric modulators of mGluR4 have potential for the treatment of type 2 diabetes through its hypoglycemic effect.

Moreover, mGluR4 was shown to be expressed in prostate cancer cell-line (Pessimissis N et al., Anticancer Res. 29(1), 371-7, 2009) or colorectal carcinoma (Chang H J et al., Cli. Cancer Res. 11(9), 3288-95, 2005) and its activation with PHCCC was shown to inhibit growth of medulloblastomas (Iacovelli L et al., J. Neurosci. 26(32) 8388-97, 2006), mGluR4 modulators may therefore have also potential role for the treatment of cancers.

Finally, receptors of the umami taste expressed in taste tissues were shown to be variants of the mGluR4 receptor (Eschle B K., Neuroscience, 155(2), 522-9, 2008). As a consequence, mGluR4 modulators may also be useful as taste agents, flavour agents, flavour enhancing agents or food additives.

Chromone-derived core structures for pharmaceutically active compounds were described in the patent application WO 2004/092154. In the latter application, they are disclosed as inhibitors of protein kinases.

EP-A-0 787 723 relates to specific cyclopropachromencarboxylic acid derivatives which are said to have mGluR antagonistic activity.

The present invention relates to compounds of the general formula (I):

and pharmaceutically acceptable salts, solvates and prodrugs thereof.

R1, R2, R3, and R4 each independently represent a -L-R group.

L represents a bond, a C1-C10 alkylene, a C2-C10 alkenylene, or a C2-C10 alkynylene, wherein said alkylene, said alkenylene or said alkynylene is optionally substituted with one or more groups independently selected from halogen, —CF3, —CN, —OH, or —NH2, and further wherein one or more —CH2— units comprised in said alkylene, said alkenylene or said alkynylene are each optionally replaced by a group independently selected from —O—, —NR11—, —CO—, —S—, —SO—, or —SO2—.

R is selected from hydrogen, C1-C10 alkyl, halogen, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, —NR11R12, —OR11, —SR11, —SOR11, —SO2R11, —CF3, or —CN, wherein said optionally substituted aryl, said optionally substituted heteroaryl, said optionally substituted cycloalkyl, or said optionally substituted heterocycloalkyl may be substituted with one or more groups independently selected from C1-C4 alkyl, halogen, —CF3, —CN, —OH, —O(C1-C4 alkyl), —NH2, —NH(C1-C4 alkyl), —N(C1-C4 alkyl)(C1-C4 alkyl) wherein the two C1-C4 alkyl moieties of said —N(C1-C4 alkyl)(C1-C4 alkyl) are optionally mutually linked to form a ring together with the nitrogen atom which they are attached to, or -L1-R13.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors or other areas of interest.
###


Previous Patent Application:
Methods and compositions for the treatment of psychotic disorders through the identification of the sult4a1-1 haplotype
Next Patent Application:
Ethynyl compounds
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.17079 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers -g2-0.2856
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277212 A1
Publish Date
11/01/2012
Document #
13505235
File Date
10/29/2010
USPTO Class
51421115
Other USPTO Classes
435/71, 436501, 514218, 5142282, 5142305, 5142338, 5142345, 514249, 51425216, 5142591, 514275, 514301, 514303, 514456, 540544, 540575, 544 586, 544105, 544127, 544282, 544331, 544349, 546114, 546118, 549403
International Class
/
Drawings
2



Follow us on Twitter
twitter icon@FreshPatents