FreshPatents.com Logo
stats FreshPatents Stats
5 views for this patent on FreshPatents.com
2013: 5 views
Updated: August 12 2014
Browse: Medtronic patents
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Therapy for kidney disease and/or heart failure

last patentdownload pdfdownload imgimage previewnext patent


20120277155 patent thumbnailZoom

Therapy for kidney disease and/or heart failure


Medical systems and methods for treating kidney disease alone, heart failure alone, chronic kidney disease with concomitant heart failure, or cardiorenal syndrome are described. The systems and methods are based on delivery of a natriuretic peptide such as Vessel Dilator to a subject. Methods for increasing and maintaining peptide levels at a certain concentration include direct peptide delivery via either an external or implantable programmable pump.
Related Terms: Chronic Kidney Disease Concomitant Dilator Kidney Disease Natriuretic Natriuretic Peptide

Medtronic, Inc. - Browse recent Medtronic patents - Minneapolis, MN, US
Inventors: William P. VanAntwerp, Andrew J. L. Walsh, VenKatesh R. Manda, John Burnes
USPTO Applicaton #: #20120277155 - Class: 514 124 (USPTO) - 11/01/12 - Class 514 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277155, Therapy for kidney disease and/or heart failure.

last patentpdficondownload pdfimage previewnext patent

REFERENCE TO SEQUENCE LISTING

This application contains a “Sequence Listing” submitted as an electronic .txt file. The information contained in the Sequence Listing is hereby incorporated by reference.

FIELD OF THE INVENTION

The invention relates to therapies involving the administration of a natriuretic peptide for the treatment of pathological conditions such as kidney disease alone, heart failure alone, or kidney disease with concomitant heart failure. The systems and methods of the invention can increase and/or control in vivo levels of natriuretic peptide in the plasma or serum of the subject to optimize the outcome of a therapeutic regimen(s). The invention further relates to the field of chronic and acute delivery of a drug through routes of administration including but not limited to subcutaneous, intravascular, intraperitoneal and direct to organ. A preferred route is subcutaneous administration. The methods of delivery contemplated by the invention include, but are not limited to, implanted and external pumps at programmed or fixed rates, implanted or percutaneous vascular access ports, depot injection, direct delivery catheter systems, and local controlled release technology.

BACKGROUND

Kidney disease (KD), also known as renal disease, is a progressive loss in renal function over a period of months or years. In particular, Kidney Disease (KD) is a major U.S. public health concern with recent estimates suggesting that more than 26 million adults in the U.S. have the disease including chronic kidney disease (CKD). The primary causes of KD are diabetes and high blood pressure, which are responsible for up to two-thirds of the cases. In recent years, the prevalence of KD has increased due to a rising incidence of diabetes mellitus, hypertension (high blood pressure) and obesity, and also due to an aging population. Because KD is co-morbid with cardiovascular disease, heart failure is a closely related health problem. In the case of Chronic Kidney Disease (CKD), patients have an increased risk of death from cardiovascular events because CKD is thought to accelerate the development of heart disease (McCullough et al., Chronic kidney diseases, prevalence of premature cardiovascular disease, and relationship to short-term mortality, Am. Heart J., 2008; 156:277-283). CKD patients generally have cardiac-specific mortality rates many times higher than age- and sex-matched non-CKD populations, and it has been suggested that the pathological heart-kidney interactions are bidirectional in nature (Ronco C. et al., Cardiorenal syndrome, J. Am. Coll. Cardiol. 2008; 52:1527-39). In a recently proposed classification system for Cardio-Renal Syndrome (CRS), Type II Cardio-Renal Syndrome (CRS) is expressly defined as constituting chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) that simultaneously causes progressive and permanent kidney disease. Similarly, Type IV CRS is defined under the same classification scheme as being a type of kidney disease that contributes to decreased cardiac function, cardiac hypertrophy and/or increased risk of adverse cardiovascular events.

Heart failure (HF) is a condition in which the heart\'s ability to pump blood through the body is impaired. HF includes, but is not limited to, acute heart failure, chronic heart failure, and acute decompensated (ADHF). HF is a common condition that affects approximately 5 million people in the United States, with 550,000 new cases diagnosed each year. Symptoms of HF include swelling and fluid build-up in the legs, feet, and/or lungs; shortness of breath; coughing; elevated heart rate; change in appetite; and fatigue. If left untreated, compensated HF can deteriorate to a point where a person undergoes ADHF, which is the functional deterioration of HF. ADHF is a major clinical challenge because HF as a primary discharge diagnosis accounts for over 1 million hospital discharges and over 6.5 million hospital days (Kozak et al., National Hospital Discharge Survey: 2002 annual summary with detailed diagnosis and procedure data, Vital Health Stat. 13, 2005; 158:1-199). The financial burden due to HF is largely borne by public health resources (e.g., Medicare and Medicaid) wherein the 6 month readmission rate is 50%, the short-term mortality rate (i.e., 60-90 days) is around 10%, and the 1 year mortality risk is around 30% (Jong et al., Prognosis and determinants of survival in patients newly hospitalized for heart failure: a population based study, Arch. Intern. Med. 2002; 162:1689-94). Recently, the number of hospitalizations attributed to ADHF has risen significantly where many people are readmitted soon after discharge because of recurring symptoms or further medical complications. Current ADHF treatments focus on removing excess fluid buildup by increasing urination with diuretic medications or by draining fluid directly from the veins via ultrafiltration. ADHF can also be treated using vasodilators, inotropes, and other therapeutic regimens described herein and as known within the art. However, recent data suggests that dialysis in patients with end stage renal disease (ESRD) may precipitate ADHF (Burton et al., Hemodialysis-induced cardiac injury: determinants and outcomes, Clin. J. Am. Soc. Nephrol. 2009; 4:914-920).

One pharmaceutical approach to treat HF is the use of Nesiritide (B-type natriuretic peptide), which is an FDA approved therapeutic option that lowers elevated filing pressures and improves dyspnea. Nesiritide is the recombinant form of the 32 amino acid human B-type natriuretic peptide, which is normally produced by the ventricular myocardium. The drug facilitates cardiovascular fluid homeostasis through counter-regulation of the renin-angiotensin-aldosterone system and promotion of vasodilation, natriuresis, and diuresis. Nesiritide is administered intravenously usually by bolus injection, followed by IV infusion. Another approved atrial natriuretic type peptide is human recombinant atrial natriuretic peptide (ANP), Carperitide, which has been approved for the clinical management of ADHF in Japan since 1995, is also administered via intravenous infusion. Another peptide under study is human recombinant urodilatin (URO), Ularitide.

In the case of Nesiritide, one recent large study suggested that Nesiritide is ineffective in treating severe heart failure (Lingegowda et al., Long-term outcome of patients treated with prophylactic Nesiritide for the prevention of acute kidney injury following cardiovascular surgery, Clin. Cardiol. 2010; 33(4):217-221). The study concluded that the reno-protection provided by Nesiritide in the immediate postoperative period was not associated with improved long-term survival in patients undergoing high-risk cardiovascular surgery.

One obstacle to delivering peptides in a clinically effective manner is that peptides generally have poor delivery properties due to the presence of endogenous proteolytic enzymes, which are able to quickly metabolize many peptides at most routes of administration. In addition, peptides and proteins are generally hydrophilic do not readily penetrate lipophilic biomembranes, and have short biological half-lives due to rapid metabolism and clearance. These factors are significant deterrents to the effective and efficient use of most protein drug therapies. Although a peptide drug can be administered intravenously, this route of administration can potentially cause undesirable effects because the peptide drug is directly introduced into the bloodstream. Intramuscular (IM) administration may be considered where sustained action is preferred. However, IM administration could result in slow absorption and possible degradation of the peptide at the injection site. Subcutaneous (SQ) injection can provide a slower absorption rate compared to IM administration and might be useful for long term therapy. However, potency could be decreased via SQ administration due to degradation and poor absorption.

Hence, there is an unmet need for drug delivery systems and device-mediated methods of protein delivery that can offer significant advantages over conventional delivery systems by providing increased efficiency, improved performance, patient compliance and convenience. There is also a need for clinically effective therapies for delivering and treating KD alone or with concomitant. HF. In the field of both chronic and acute delivery of peptides, there is an unmet need for maintaining the therapeutic effect of an atrial natriuretic peptide for a desired period of time and at a specific plasma concentration. There is also need for continuous infusion of a natriuretic peptide as an effective alternative to administration by multiple injections. There is a need for developing the pharmacokinetic and pharmacodynamic profile for ANP drugs useful for treating KD and HF. There is also an unmet need for developing therapies providing for improved efficacy of the delivered peptides using parenteral dosage forms such as intravenous, intramuscular, and subcutaneous injection or infusion.

Many studies have shown that known KD and HF therapies are associated with mortality in patients with heart failure. Hence, there is an unmet need for developing new agents and methods of delivery to safely and effectively improve cardiac performance and modulate fluid load. There is also an unmet need for methods that open new pathways to improve quality of life and outcomes of patients with acute and worsening decompensated heart failure and KD.

SUMMARY

OF THE INVENTION

The disclosure provided herein is directed to a study of continuous subcutaneous (SQ) administration of Atrial Natriuretic Peptide (ANP) hormones such as vessel dilator (VD) kaliuretic peptide (KP), and brain natriuretic peptide, generally referred to herein as “natriuretic peptides,” to patients having Kidney Disease (KD) alone, Heart Failure (HF) alone, or KD with concomitant HF. The continuous subcutaneous administration of a natriuretic peptide can be used to maintain in vivo concentrations of the natriuretic peptide above a critical efficacy threshold for an extended period of time. Both bolus and continuous SQ delivery of natriuretic peptides are contemplated. The invention disclosed herein has a number of embodiments that relate to therapeutic regimens and systems for treatment of KD alone, HF alone or KD with concomitant HF. In certain embodiments, a medical system or method is used to treat a subject having cardiorenal syndrome (CRS).

In certain embodiments, a medical system or method is used to treat a subject having heart disease.

In certain embodiments, a medical system or method is used to treat a subject having kidney disease.

In certain embodiments, a medical system or method is used to treat a subject having cardiorenal syndrome (CRS) selected from CRS Type I, CRS Type II, CRS Type III, CRS Type IV or CRS Type V.

In certain embodiments, a medical system or method is used to treat a subject having heart disease selected from chronic heart failure, congestive heart failure, acute heart failure; decompensated heart failure, systolic heart failure, or diastolic heart failure.

In certain embodiments, a medical system or method is used to treat a subject having kidney disease selected from Stage 1 kidney disease, Stage 2 kidney disease, Stage 3 kidney disease, Stage 4 kidney disease, Stage 5 kidney disease, and end-stage renal disease.

|0≦y≦(65−n)}. In another embodiment, the volume of distribution for the natriuretic peptide is from any one of about 5 to about 65 L, about 10 to about 25 L, about 5 to about 15 L, about 30 to about 65 L and about 45 to about 65 L.

A method for administering a natriuretic peptide such as VD and KP to a subject having KD alone, HF alone, or KD with concomitant HF is provided. The method comprises administering a natriuretic peptide to a subject using a drug provisioning apparatus to maintain a plasma level of the natriuretic peptide in the subject within a specified mean steady state concentration range. This specified concentration is not greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 6000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 100 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight. The specified concentration can also not be greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 18,000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 300 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight. The method can administer the natriuretic peptide subcutaneously, intramuscularly, or intravenously. One route is subcutaneous administration. The method delivers the ANP hormones selected from any one of long-acting natriuretic peptide (LANP), kaliuretic peptide (KP), urodilatin (URO), atrial natriuretic peptide (ANP) and vessel dilator (VD), and also brain natriuretic peptide (BNP).

A therapeutic method for treatment of KD alone, HF alone, or KD with concomitant HF is provided is provided. The therapy is based on a method of treatment that effects increased levels of natriuretic peptide. The method includes increasing plasma levels of a natriuretic peptide in a subject having KD alone, HF alone, or KD with concomitant HF is provided by causing the selective release of the natriuretic peptide using a drug provisioning component. The method further includes a control unit consisting of a processor being operably connected to and in communication with the drug provisioning component, wherein the control unit contains a set of instructions that causes the drug provisioning component to administer the natriuretic peptide to the subject according to a therapeutic regimen. The therapeutic regimen is tailored so that the plasma concentration of the natriuretic peptide is maintained within a specified range by effecting controlled administration of the natriuretic peptide using the drug provisioning component. This specified concentration is not greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 6000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a level reached by a one hour intravenous infusion of the natriuretic peptide at 100 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight. This specified concentration can also not be greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 18,000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a level reached by a one hour intravenous infusion of the natriuretic peptide at 300 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight.

A second therapeutic method of treating a subject having KD alone, HF alone, or KD with concomitant HF is provided, wherein the method includes increasing plasma or serum concentration of the natriuretic peptide in the subject using the systems of the invention. The method further includes maintaining circulating levels of natriuretic peptide in the plasma or serum of the subject within a specified mean steady state concentration range. In any embodiment, the specified mean steady state concentration is not greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 6000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 100 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight. In any embodiment, the specified mean steady state concentration is not greater than a plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 18,000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or a plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 300 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight.

In any embodiment, the method may further include monitoring one or more physiologic parameters of the subject. In any embodiment, the method further includes creating a subject-specific dose-response database using data collected from the subject, evaluating the data in the database, calculating instructions for use with a drug delivery device to maintain a plasma level of the natriuretic peptide in the subject within a specified mean steady state concentration range, and further monitoring subject data and updating the database as necessary. Data collected from the subject could include subject weight, enzyme levels, biomarkers, observed drug clearance, etc.

A medical system for administering the natriuretic peptide to a subject having KD alone, HF alone, or KD with concomitant HF is provided. The medical system includes a drug provisioning component that selectively releases a pharmaceutically effective amount of natriuretic peptide to the subject and a control unit consisting of a processor operably connected to and in communication with the drug provisioning component. The control unit is programmed with a set of instructions that causes the drug provisioning component to administer the natriuretic peptide to the subject according to a therapeutic regimen comprising administering a natriuretic peptide to the subject subcutaneously, wherein the therapeutic regimen is sufficient to maintain circulating levels of the natriuretic peptide in the plasma or serum of the subject above a desired mean steady state concentration. In any embodiment, the therapeutic regime is selected to maintain serum natriuretic peptide concentrations in the subject at a value not greater than a critical concentration threshold. The critical concentration can be either the plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 6000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or the plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 100 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight. The critical concentration can also be either the plasma level reached by either a single subcutaneous bolus injection of the natriuretic peptide at 18,000 ng of the natriuretic peptide per kilogram of the subject\'s body weight or the plasma level reached by a one hour intravenous infusion of the natriuretic peptide at 300 ng of the natriuretic peptide per kilogram·minute of the subject\'s body weight.

In any embodiment of the invention, the natriuretic peptides may include any of the atrial natriuretic peptide (ANP) hormones and brain natriuretic peptide (BNP). ANP hormones include long acting natriuretic peptide (LANP), kaliuretic peptide (KP), atrial natriuretic peptide (ANP), vessel dilator (VD), and urodilatin (URO).

In any embodiment of the invention, the drug provisioning component of the medical system may administer the natriuretic peptide to the subject subcutaneously, intramuscularly, or intravenously. A preferred route is subcutaneous administration.

In any embodiment of the invention, a drug provisioning component may consist of any of the following elements: an external or implantable drug delivery pump, an implanted or percutaneous vascular access port, a direct delivery catheter system, and a local drug-release device. In any embodiment of the invention, the drug provisioning component can deliver the natriuretic peptide at a fixed, pulsed, or variable rate. The drug provisioning component may also be programmable or controllable by a patient who is a subject of the invention.

In any embodiment of the invention, sensors of the medical system of the invention may monitor one or more physiological parameters of the subject obtained by a sensor. These parameters are preferably related to blood pressure or the renal system and can include blood pressure, pulmonary artery pressure, left atrial pressure, right atrial pressure, central venous pressure, lung fluid volume, proteinuria, plasma renin, cardiac output, and glomerular filtration rate.

In any embodiment of the invention, a control unit may operate to regulate the selective release of the natriuretic peptide to maintain a mean steady state concentration using data obtained from the subject. The control unit may further contain computer memory, and the control unit, using the computer memory and processor, may further compile and store a database containing data collected from the subject and also compute a dosing schedule that makes up a part of the therapeutic regimen.

In any embodiment, a medical system is provided for administering a natriuretic peptide. The medical system has a drug provisioning component to administer a therapeutically effective amount of a natriuretic peptide to a subject suffering from kidney disease alone, heart failure alone, or kidney disease with concomitant heart failure, said drug provisioning component maintaining an effective plasma concentration of the natriuretic peptide based, at least in part, on a volume of distribution for the natriuretic peptide exhibited by the subject.

|0≦y≦(60−n)}.

In any embodiment, a method for administering a natriuretic peptide is provided. The natriuretic peptide is administered to a subject using a drug provisioning component to maintain a plasma level of the natriuretic peptide at a steady state concentration from about 0.5 to about 40 ng/mL or from about 0.5 to about 60 ng/mL, wherein the natriuretic peptide is administered through a subcutaneous route.

In any embodiment, a method for administering a natriuretic peptide is provided. The natriuretic peptide is administered to a subject suffering from kidney disease alone, heart failure alone, or with concomitant kidney disease and heart failure using a drug provisioning component based at least in part on a volume of distribution for the natriuretic peptide exhibited by the subject.

In any embodiment of the invention, a specified range of plasma concentration of the natriuretic peptide is not greater than a plasma concentration of the natriuretic peptide reached during either a subcutaneous bolus of the natriuretic peptide at 6000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 100 ng/kg·min in the subject.

In any embodiment of the invention, a specified range of plasma concentration of the natriuretic peptide range is not greater than a plasma concentration of the natriuretic peptide reached during either a subcutaneous bolus of the natriuretic peptide at 18,000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 300 ng/kg·min in the subject.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide in a cyclic on/off pattern at a rate (ng/kg of body weight) for multiple days, wherein the rate results in a plasma concentration of natriuretic peptide not greater than a plasma concentration of the natriuretic peptide reached in the subject during either a subcutaneous bolus at 6000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 100 ng/kg·min.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide in a cyclic on/off pattern at a rate (ng/kg of body weight) for multiple days, wherein the rate results in a plasma concentration of natriuretic peptide not greater than a plasma concentration of the natriuretic peptide reached in the subject during either a subcutaneous bolus at 18,000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 300 ng/kg·min.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide at a rate (ng/kg of body weight) for 4 hours on and 8 hours off, then 4 hours on and 8 hours off for each of 3 days, wherein the rate results in a plasma concentration of natriuretic peptide not greater than a plasma concentration of the natriuretic peptide reached in the subject during either a subcutaneous bolus at 6000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 100 ng/kg·min.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide at a rate (ng/kg of body weight) for 4 hours on and 8 hours off, then 4 hours on and 8 hours off for each of 3 days, wherein the rate results in a plasma concentration of natriuretic peptide not greater than a plasma concentration of the natriuretic peptide reached in the subject during either a subcutaneous bolus at 18,000 ng/kg or a 1 hour.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide to maintain a plasma level of the natriuretic peptide at a steady state concentration from any one of about 0.5 to about 60 ng/mL, about 0.5 to about 40 ng/mL, about 10 to about 60 ng/mL, about 20 to about 40 ng/mL, about 30 to about 60 ng/mL, about 15 to about 55 ng/mL, about 25 to about 55 ng/mL about 35 to about 55 ng/mL about 23 to about 42 ng/mL about 19 to about 43 ng/mL about 10 to about 50 ng/mL 10 to about 20 ng/mL, about 20 to about 30 ng/mL, about 20 to about 35 ng/mL, about 25 to about 40 ng/mL, and about 30 to about 40 ng/mL.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide to maintain a plasma level of the natriuretic peptide (ng/mL) at a steady state concentration in the range represented by n to (n+i), where n={xεR|0<x≦60} and i={yεR 0≦y≦(60−n)}.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide to maintain a plasma level of the natriuretic peptide (ng/mL) at a steady state concentration in the range represented by n to (n+i), where n={xεR|0<x≦40} and i={yεR|0≦y≦(40−n)}.

In any embodiment of the invention, a drug provisioning component delivers a therapeutically effective amount of the natriuretic peptide at a continuous rate (ng/kg of body weight) matching the area under the curve of a subcutaneous bolus at 18,000 ng/kg of the subject.

In any embodiment of the invention, wherein a medical system contains a control unit in communication with the drug provisioning component.

In any embodiment of the invention, a drug provisioning component is selected from an external or implantable drug delivery pump, an implanted or percutaneous vascular access port, a direct delivery catheter system, and a local drug-release device.

In any embodiment of the invention, a drug provisioning component is programmable.

In any embodiment of the invention, a drug provisioning component is controlled by a patient who is the subject.

In any embodiment of the invention, a medical system has a control unit having a processor and memory wherein the processor compiles and stores a database of data collected from the subject using a sensor and computes a dosing schedule.

In any embodiment of the invention, data collected from the subject is transmitted via radio frequency by a transmitter, and the data is received by an external controller.

In any embodiment of the invention, data collected from the subject is transmitted and digital instructions returned to the control unit via the Internet.

In any embodiment of the invention, a drug provisioning component and a control unit are co-located.

In any embodiment of the invention, a drug provisioning component, or the control unit are connected or controlled wirelessly.

In any embodiment of the invention, a drug provisioning component is programmed to release a single bolus of 6000 ng of natriuretic peptide per kilogram of the subject\'s body weight wherein the single bolus is administered three times at 0 hours, 24 hours and 48 hours.

In any embodiment of the invention, a drug provisioning component is programmed to continuously deliver 18,000 ng of natriuretic peptide per kilogram of the subject\'s body weight over 72 hours.

In any embodiment of the invention, a medical system has a patch pump in communication with a control unit.

In any embodiment of the invention, a specified range of a plasma concentration of the natriuretic peptide is not greater than a plasma concentration of the natriuretic peptide reached during either a subcutaneous bolus of the natriuretic peptide at 18,000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 300 ng/kg·min in the subject.

In any embodiment of the invention, a drug provisioning component subcutaneously delivers a therapeutically effective amount of the natriuretic peptide at a rate (ng/kg of body weight) for 4 hours on and 8 hours off, then 4 hours on and 8 hours off for each of 3 days, wherein the rate results in a plasma concentration of natriuretic peptide not greater than a plasma concentration of the natriuretic peptide reached in the subject during either a subcutaneous bolus at 6000 ng/kg or a 1 hour intravenous infusion of the natriuretic peptide at 100 ng/kg·min.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Therapy for kidney disease and/or heart failure patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Therapy for kidney disease and/or heart failure or other areas of interest.
###


Previous Patent Application:
Homodimer of insulinotropic peptide analogues and method for preparation thereof and use thereof
Next Patent Application:
Inhibition of pathological bone formation
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Therapy for kidney disease and/or heart failure patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.03121 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1986
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277155 A1
Publish Date
11/01/2012
Document #
File Date
09/23/2014
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Chronic Kidney Disease
Concomitant
Dilator
Kidney Disease
Natriuretic
Natriuretic Peptide


Follow us on Twitter
twitter icon@FreshPatents